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PREFACE

In the preparation of this text the author acknowledges

joint authorship with Robert L. Short, Technical High School,

Cleveland.

A knowledge of the more elementary parts of algebra is

presupposed. For this reason some definitions and rules for

operation are assumed as already known to the pupil.

Attention is called to the generalization and bringing together
of related topics. Chapter III is an example of this feature.

Here all forms of the exponent are treated. This gives oppor-

tunity to regard the logarithm as a decimal exponent and to

make the logarithmic operation laws intelligible. The intro-

duction of all linear equations and inequalities in Chapter II

shows their solution directly dependent upon the four funda-

mental operations. It is thought that the introduction of the

idea of functionality and of algebraic forms taken directly from

the calculus will be found helpful to those who expect to

pursue the study of mathematics further.

The treatment of factoring is thorough and so taken up that

Synthetic Division becomes the natural method for factoring

many higher forms and for solving equations of higher degree.

It is hoped that the treatment of variation as a proportion
will remove the reluctance with which most pupils approach
that subject in connection with their work in science.

In scope this text is sufficient preparation for most courses

in mathematics which require thorough knowledge of the

operations of algebra.
WEBSTER WELLS.
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ALGEBRA

I. THE FUNDAMENTAL LAWS FOR ADDITION AND
MULTIPLICATION

1 . The Commutative Law for Addition.

If a man gains $8, then loses $3, then gains $6, and finally

loses $ 2, the effect on his property will be the same in what-

ever order the transactions occur.

Then, the result of adding +$8, -$3, + $6, and -$ 2,

will be the same in whatever order the transactions occur.

Then, omitting reference to the unit, the result of adding

-f 8,
—

3, +6, and — 2 will be the same in whatever order the

numbers are taken.

This is the Commutative Law for Addition, which is :

The sum of any set of numbers will be the same in

whatever order they may be added.

2. The Associative Law for Addition.

The result of adding b + c to a is expressed a -f- (b + c),

which equals (b + c) + a by the Commutative Law for Addi-

tion (§ 1).

But (b -f- c) + a equals 6-f-c-f-a ;
and b+ c-\-a equals a+b-\-c,

by the Commutative Law for Addition.

Whence, a + (b + c)
= a + b + c.

Then, to add the sum of a set of numbers, we add the
numbers separately.

This is the Associative Law for Addition.

3. The Commutative Law for Multiplication.

The product of a set of numbers will be the same in

whatever order they may be multiplied.
1



2 ALGEBRA

The sign of the product of any number of terms is inde-

pendent of their order
; hence, it is sufficient to prove the

commutative law for arithmetical numbers.

Let there be, in the figure, a stars in each row, and a in a row.

b rows. *** •••

We may find the entire number of stars by multiply- *** •••

ing the number in each row, a, by the number of ***...

rows, b.

Thus, the entire number of stars is a x b. b rows.

We may also find the entire number of stars by multiplying the num-

ber in each vertical column, &, by the number of columns, a.

Thus, the entire number of stars is b x a.

Therefore, a x b = b x a,

which is the law for the product of two positive integers.

Again, let c, d, e, and / be any positive integers.

C P C X P
'

Then, - x- - =
; for, to multiply two fractions, we

'

d f dxf
J

multiply the numerators together for the numerator of the

product, and the denominators together for its denominator.

O P P X c
Then, -x-== ;

since the commutative law for multi-
d f fxd

plication holds for the product of two positive integers.

Hence, - x - = - x -
;
which proves the commutative law

d f f d
1 *

for the product of two positive fractions.

4. The Associative Law for Multiplication.

To multiply by the product of a set of numbers, we
multiply by the numbers of the set separately.

The result of multiplying a by be is expressed a X (he),

which equals (be) x a, by the Commutative Law for Multi-

plication.

(be) x a equals bca, which equals abc by the Commutative

Law for Multiplication.

Whence, a x (6c)
= abc
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This proves the law for the product of three numbers.

The Commutative and Associative Laws for Multiplication may be

proved for the product of any number of arithmetical numbers.

(See the author's Advanced Course in Algebra, §§ 18 and 19.)

5. The Distributive Law for Multiplication.

The law is expressed (a -f- b)c
= ac + be.

We will now prove this result for all values of a, b, and c.

I. Let a and b have any values, and let c be a positive

integer.

Then, (a. -f b)c = (a + b) + (« + &) + ... to c terms

= (a + a+ ••• to c terms) -J- (p'+\b + ••• to c terms)

(by the Commutative and Associative Laws for Addition),

= ac + 6c.

II. Let a and 6 have any values, and let c = -, where e and

/are positive integers.
*

Since the product of the quotient and divisor equals the dividend,

Then, (a + b) x - x / = (a + 6) x e = ae + 6e, by I.

Whence, (a + 6) x-x/=ax-x/+6x-x/.

Dividing each term by /, we have

(a+ &) x -= a x -+6 x.-.^

/ / /

Thus, the result is proved when c is a positive integer or a

positive fraction.

III. Let a and b have any values, and let c = —
#, where #

is a positive integer or fraction.

(a + b)(-g) = -
(a + b)g = - (ag + bg), by I and ft,

= - ag -bg = a(- g) + 6(- gr).

Thus, the distributive law is proved for all positive or nega-

tive, integral or fractional, values of a, 5, and c.
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II. ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION,
APPLICATIONS

6. Similar terms are those which do not differ at all or

differ only in their coefficients.

7. Any factor of a product may be considered the coefficient

of the product of the remaining factors.

8. To add two similar terms, write their coefficients with

the proper sign and affix the common literal part.

Ex. 1. Find the sum of ax and bx.

ax + bx = (a + b)x.

Ex. 2. Find the sum of 3 abcx and — 5 mcx.

3 abcx+ (— 5 mcx)= (3ab — 5 m)cx.

This is equivalent to taking the common factor ex from the expression

3 abcx — 5 mcx.

9. To subtract two similar terms find what number added

to the subtrahend will produce the minuend. The number

added is called the difference. This is equivalent to chang-

ing the sign of the subtrahend and adding the result to the

minuend.

Ex. 3. Subtract 3 ax from 5 ax. 2 ax added to 3 ax is 5 ax.

Hence 2 ax is the difference.

Ex. 4. From 15 m take —8 m. Changing the sign (men-

tally) of —8 m, we have 15 m 4- 8 m = 23 m.

The written work should appear in this form :

15 m
— 8m
23m

10. Three laws enter into multiplication of monomials :

TJie law of shjiis.

The. law of coefficients.

The late of
'

exjumciitx.
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The product of two terms of like sign is positive ; the

product of two terms of unlike sign is negative.
To the product of the numerical coefficients annex the

letters ; giving to each an exponent equal to the sum of
its exponents in the factors.

The same three laws enter into division, except that quotient

takes the place of product and the exponent of the divisor is

subtracted from the exponent of the same letter in the divi-

dend. (Make a rule for division of monomials.) The reason

for such rule follows readily when division is defined as the

process of finding one of two numbers when their product and
one of the numbers are given.

11. An equation is a statement that two numbers are equal.

12. If an equation is true for all finite values of the un-

known numbers involved, it is an identical equation or identity.

13. If an equation is true only for a definite set of values

of the unknown numbers involved, it is an equation of condition.

14. An equation may not be true for any values of the un-

knowns involved. It is then said to have no roots.

15. If when a number is substituted for an unknown in an

equation, the equation becomes identical (§ 12) for that num-

ber, the equation is said to be satisfied.

The roots of an equation are the numbers which satisfy it.

A root of an equation is also called a solution of the equation.

16. Some principles used in the solution of equations are a

set of generally accepted truths called axioms. The axioms

most frequently in use are :

1. If the same number, or equal numbers, be added to

equal numbers, the resulting numbers will be equal.
2. If the same number, or equal numbers, be sub-

tracted from equal numbers, the resulting numbers
will be equal.

3. If equal numbers be multiplied by the same num-
ber, or equal numbers, the resulting numbers will be
equal.
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4. If equal numbers be divided by the same number,
or equal numbers except 0, the resulting numbers will
be equal.

17. To solve an equation is to find its roots.

The following steps indicate the process :

$3-5 = 15. (1)

Add 5 to each member, (Ax. 1)

\x = 15 + 5 = 20. (2)

Multiply each member by 3, (Ax. 3)

2sc = 60. -(3)

Divide each member by 2, (Ax. 4)

x - 30. (4)

18. Two equations are equivalent when every solution of the

one is a solution of the other.

Thus equations (1), (2), (3), (4) are equivalent.

The axioms of algebra enable us to transform an equation
into an equivalent one which may be more easily solved than

the given one.

EXERCISE l

i. Add 3a- 2 b + 5c, b- 9a- 11 c, 3c + b- 2 a, b- c- a.

2. From the sum of 7 x — 8 ?/ -f- 4 z and -*2x+ Bz+.f take

the sum of x— y — z and y + z — 9 x.

3. Add 3(?w + n)— 5s + £;
— 8(m + n)+ 4« — 11 s;

8 s - 9 (m + n)
— 5 1

; 6(m +w) — 4 g + 9 t.

4. From |p— fa-j-r take the sum of |j> + ^ a + f ?* and

\p-%q-\r.

5. Subtract a# 4- by + 02; from m2# — y + <2&

6. Subtract (c—d)»— (c+d)y from (2e+6d)aM-(4c— 3d)y,

7. Take mv -f a? from dkI — x2
.

8. From 4aWc+5o6(c + d)
— 9a*6c? take

(3 a + 5) &*c - aft (c H
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9. Simp] i

f'y ( x* — 4 x2
-f 5 x — 1)

—
(2 ar

3 + 5 a2 — # — 7) +
(or

5 + 2 ar- 3 as + 2).

10. Simplify (x + 1) (x
-

2) (a;
-

3)
- (x - 2)

2 + (ar
3 -

1).

11. Simplify (x + y)
4 -

(x
-

y)\

12. Simplify [4 a;
2

-(2 x 4-5)] [2 x
2 -

(x -3)].

13. Multiply 4 a;
2 + ^ —

2/

2

by 3 a?
2 — 5 a;?/ -|- 4 1/

2
.

14. Multiply a a; -|- by -f cz by bx — ay -\- cz.

15. Multiply 4 (m + »)
s — 5 (wi 4- w) 4- 7

by (m 4- ^)
2 + 2(m + n)-f 1.

16. Multiply ar
2a+1

4- x
a
y

h
4- y

2h

by a;
a —

y
h

.

17. Expand (4 a 4- 3 &)
2

(4 a
- 3 b)

2
.

18. Multiply
1 a2 -

\ ab + f b* by - fa 4- 1 6.

19. Multiply a2*
4- <&'&« 4- &2e

by a 2flr - agb
e

4- 7r
e

.

»20.

Multiply x2—
#!/ 4- 2/

2 — xz — yz + z
2

by a; 4- y 4- 2.

21. Multiply x2 + ax-\- bx 4- a& by x 4- c.

22. Divide 6x6 ~ 19a;5 + 12 a?
4
4- 5 ar

3
4-4 a;

2 - 6x -2
bv 2 a,*

2 3 a; 1
23. Divide a12 + ft

12

by a4
4- b\

J

24. Divide 32 m5 — 243 w3
by 2 m — 3 n.

25. Divide T
i
F a

3 + ^^3

byia4-|&.

26. Divide a6n — 66w by a2n
4- a*&" 4- b

2n
.

27. Divide -i a^ 4- 3
7
g
xl! + i !/

3

by \ x 4- 1 y.

28. Divide 9 rV + 15 r4- 38 r8*- 8 s
4- 26 r.s

3
by 5 r8

4-4 s
2- ra

29. Divide 7 m2*+4 - 8 m'+V*- 1 - 12 nAx~ 2

by mx+2 - 2 n**~*

30. Divide a;
3

+(a + &) a;
2 -

(6 a
2 - 5 ab) x + 6 a2b by a? 4- 3 a.

Solve the following equations and verify results :

31. (x + 2)(x-5) = x2 -±x-4..
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32. 6(o;-3)+5(4flj-7)+l =0.

34.
2
(3a: _2)_ i (3^-2) = i(3^-2)-17.

3S (2/
-

4) (2/ -f- 3) (2/
-

2)
=

(2/
- 1

)
3 - 1.

Gt-\-T) 13 2*
,

t

6
15 21 5 3

37. ab + ax-\- 3b2 — 2 a2 = 4 be — bx-\-cx—c
2—ac. Solve for #.

38. y — e = (x
—

d). Solve for x.

m

39. (a + b 4- c) (a?
— 2 a)

—
(a
—

c) (a -f- &)

=
(a _6_ c)2_(a

2 +^
ax— b

,
bx — c

,
ex — a A

40. 1

-
1

= 0.

a b e

19. It is sometimes convenient to indicate operations of

addition and subtraction. For this purpose parentheses are

used. The various forms of parentheses are
:. parentheses (),

braces
\ \, brackets [ ],

and the vinculum .

A positive sign before parentheses indicates that the number

within is to be added. Hence, parentheses preceded by a -f

sign may be removed without changing the signs of the terms

within.

Ex. 2a + 3& + (3a-5& + c)
= 2a + 3& + 3a-5& + c.

A negative sign before parentheses indicates that the num-

ber within the parentheses is to be subtracted. Hence, paren-

theses preceded by a — sign may be removed if the -f- signs of

the terms within be changed to — and the — signs to + (§ 9).

Ex. 1. 5a+ 36 -(4 a + lb) « 5a+3 b - 4a— 7 b = a- 4 6.

Ex. 2. 5a+3 6-(-4a+ 7&) =r>a+3&+4a-7 6 = 9a--l/>.

If the expression contains two or more parentheses, one

within the other, remove one at a time beginning with the

inner parentheses.
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Ex. 5 a + {3 a - (5 b + 2 a)} =
6 a + {3 a

- 5 fr
- 2 a} =

5 a + 3 a — 66 — 2 a =
6 a - 5 6.

EXERCISE 2

Simplify the following by removing the signs of aggregation,

and then uniting similar terms :

i. .9 m +(— 4 m + 6 n)
—

(3 m — n).

2. 2x-3y-[ox + y] + \-Sx-7y\. .

3. 4?/- 2 a2

-[-4a;
2 - 7 xy + 5 y

2

~]+ (8 x2 - 9 xy).

4. 3a2 -5ab-l-±a2 + 2ab-9b2l-7a2 -6ab +.6
2

.

5. 5 a -(7 a -[9 a + 4]).

6. 7x-\-8y-10x-lly\.
7. 6 mn -f- 5 — ([

— 7 m/i — 3]
—

|

— 5 mn — 11
\ ).

8. 2a-(-3 6+c-Ja-&j)-(3a + 2c -[- 2& + 3c]>

9 . 37_[4i_{i3_(56-28 + 7)}].

10. 9 m — (3 n -f J4 m — [n
— 6 m] |

— [m -f 7 nj).

11. In each of the above expressions find the value if

a == 1, b ±= — 2, c = —
3, m = 5, n = 2, a; = —

4, ?/
= — 1.

20. A number may be enclosed in parentheses preceded by
a + sign without changing the sign of its terms, but if a num-

ber is enclosed in parentheses preceded by a — sign, each plus

term placed in parentheses is changed to minus and each minus

term to plus.

EXERCISE 3

In each of the following expressions, enclose the last three

erms in parentheses preceded by a — sign :

1. a — b *- c -f d. 3. x -f- x
2

y — xy
2 — y

5
.

2. ?ft
3 + 2m2 + 3m + 4. 4 . a2 -4 62 + 12 6 - 9.
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5. 4 x- — y
2 — 2 yz

— z
2
. 7. x2 — 2 xy + y

2
-f 3 x — 1

//.

6 . a 2 + // _ c
2 + c^ 8. u4 _5r*3 -8n2 + Gn + 7.

DEGREE OP A RATIONAL EXPRESSION

21 . A monomial is said to be rational and integral when it

is either a number expressed in Arabic numerals, or a single

letter with unity for its exponent, or the product of two or

more such numbers or letters.

Thus, 3 a2bs
, being equivalent to 3 • a a • b • b •

ft, is rational and inte-

gral.

A polynomial is said to be rational and integral when each
3

term is rational and integral : as 2 ar ab -f- c
3
.

4

22. If a term has a literal portion which consists of a single

letter with unity for its exponent, the term is said to be of the

first degree.

Thus, 2 a is of the first degree.

The degree of any rational and integral monomial (§ 21) is

the number of terms of the first degree which are multiplied

together to form its literal portion.

Thus, 5 ab is of the second degree; 3 a263
, being equivalent to

3 • a • a • b • b •

ft, is of the fifth degree ;
etc.

The degree of a rational and integral monomial equals the

sum of the exponents of the letters involved in it.

Thus, rt64c3 is of the eighth degree.

The degree of a rational and integral polynomial is the

degree of its term of highest degree.

Thus, 2 a2b — 3 c + d2 is of the third degree.

23. If a rational and integral monomial (§ 21) involves a

certain letter, its degree with respect to it is denoted by its

exponent.
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If it involves two letters, its degree with respect to them is

denoted by the sum of their exponents ;
etc.

Thus, 2 ab4x2
y
s is of the second degree with respect to x and of the

fifth with respect to x and y.

24. An Integral Equation is one each of whose members is

a rational and integral expression (§ 21) ; as,

4a? — 5 = \y + 1.

A Numerical Equation is one in which all the known num-

bers are represented by Arabic numerals
; as,

2 x — 7 = x + 6.

25. If an integral equation (§ 24) contains one or more un-

known numbers, the degree of the equation is the degree of its

term of highest degree.

I

Thus, if x and y represent unknown numbers,

ax — by
— c is an equation gf the first degree ;

x2
-f 4 x = — 2, an equation of the second degree ;

2 x2 — 3 xy
2 = 5, an equation of the third degree ;

etc.

A Linear, or Simple, Equation is an equation of the first

degree.

26. The equations of Exercise 1 were integral, first degree
in one unknown number, linear.

THEOREMS IN REGARD TO EQUIVALENT EQUATIONS

27. If the same expression be added to both members
of an equation, the resulting equation will be equivalent
to the first.

;

Let A=B (1)

be an equation involving one or more unknown numbers.

To prove the equation A + C = B + C, (2)

where C is any expression, equivalent to (1).
-

Any solution of (1), when substituted for the unknown numbers,
makes A identically equal to B (§ 15).

It then makes A + C identically equal to B + C (§ 16, 1).

Then it is a solution of (2).
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Again, any solution of (2), when substituted for the unknown num-

bers, makes A+C identically equal to B -f C.

It then makes A identically equal to B (§ 16, 2).

Then it is a solution of (1).

Therefore, (1) and (2) are equivalent.

The principle of § 16, 1, is a special case of the above.

28. The demonstration of § 27 also proves that

If the same expression be subtracted from both mem-
bers of an equation, the resulting equation will be equiva-
lent to the first.

The principle of § 16, 2, is a special case of this.

29. If the members of an equation be multiplied by
the same expression, which is not zero, and does not
involve the unknown numbers, the resulting equation
will be equivalent to the first.

Let A = B (1)

be an equation involving one or more unknown numbers.

To prove the equation A x <7 = B x (7, (2)

where C is not zero, and does not involve the unknown numbers, equiva-

lent to (1).

Any solution of (1), when substituted for the unknown numbers,

makes A identically equal to B.

It then makes A x C identically equal to B x C (§ 16, 3).

Then it is a solution of (2).

Again, any solution of (2), when substituted for the unknown num-

bers, makes A x C identically equal to B x C.

It then makes A identically equal to B (§ 16, 4).

Then it is a solution of (1).

Therefore, (1) and (2) are equivalent.

The reason why the above does not hold for the multiplier zero is,

that the principle of § 10, 4, does not hold when the divisor is zero.

The principle of § 10, 3, is a special case of the above.

30. If the members of an equation be multiplied by an ex-

pression which involves the unknown numbers, the resulting

equation is, in general, not equivalent to the first.

Consider, for example, the equation x + 2 = 3 x — 4. (1)

Now the equation

(x + 2) (x
-

1) = (3 x - 4)<> - 1), (2)
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which is obtained from (1) by multiplying both members by x— 1, is

satisfied by the value x = 1, which does not satisfy (1).

Then (1) and (2) are not equivalent.

Titus it is never allowable to multiply bath members of an

integral equation by an expression which involves the unknown

numbers; for in this way additional solutions are introduced.

31. If the members of an equation be divided by the
same expression, which is not zero, and does not involve
the unknown numbers, the resulting equation will be

equivalent to the first.

Let A=B (1)

be an equation involving one or more unknown numbers.

A BTo prove the equation — = —
, (2)

where C is not zero, and does not involve the unknown numbers, equiva-

lent to (1).

Any solution of (1), when substituted for the unknown numbers,
makes A identically equal to B.

A B
It then makes — identically equal to — (§ 16, 4).

C
Then it is a solution of (2).

Again, any solution of (2), when substituted for the unknown num-
A B

bers, makes — identically equal to — •

It then makes A identically equal to B.

Then it is a solution of (1).

Therefore, (1) and (2) are equivalent.

The principle of § 16, 4, is a special case of the above.

32. If the members of an equation be divided by an expres-

sion which involves the unknown numbers, the resulting equa-

tion is, in general, not equivalent to the first.

Consider, for example, the equation

O + 2)(x
-

l) = (3x - 4) (a
-

1). (1)

Also the equation x -}- 2 =: Sx — 4, -^ (2)

which is obtained from (1) by dividing both members by x — 1.

Now equation (1) is satisfied by the value x = 1, which does not sat-

isfy (2).

Then (1) and (2) are not equivalent.

I
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It follows from this that it is never allowable to divide both

members of an in (earn I equation by an expression which in-

volves the unknown numbers ; forAn this way solutions are lost.

33. If both members of a fractional equation be multi-

plied by the L.C.M. of the given denominators, the re-

sulting equation is in general equivalent to the first.

Let all the terms be transposed to the first member, and let

them be added, using for a common denominator the L. C. M.

of the given denominators.

The equation will then be In the form

- = 0. (1)

We will now prove the equation

-4 = 0, (2)

which is obtained by multiplying (1) by the L. C. M. of the given denomi-

nators, equivalent to (1), if A and B have no common factor.

Any solution of (1), when substituted for the unknown numbers,
A

makes — identically equal to 0.

Then, it must make A identically equal to 0.

Then, it is a solution of (2).

Again, any solution of (2), when substituted for the unknown num-

bers, makes A identically equal to 0.

Since A and B have no common factor, B cannot be when this solu-

tion is substituted for the unknown numbers.

Then, any solution of (2), when substituted for the unknown numbers,
A

makes —
identically equal to 0, and is a solution of (1).B

Therefore, (1) and (2) are equivalent, if A and B have no common
factor.

If A and B have a common factor, (1) and (2) are not equivalmt ;

consider, for example, the equations

£=JL -= 0, and x - 1 = 0.

a* - 1

The second equation is satisfied by the value x = 1, which does not

satisfy the first equation ; then, the equations are not equivalent.
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34. A fractional equation may be cleared of fractions by

multiplying both members by any common multiple of the

denominators; but in this way additional solutions are often

introduced, and the resulting equation is not equivalent to the

first.

Consider, for example, the equation

%
I

%
2

x2 — 1 x — 1

If we solve by multiplying both members by x2 — 1, the L. C. M. of

x2 — 1 and x — 1, we find x — — 2.

If, however, we multiply both members by (x
2 —

l)(x — 1), we have

xs — x2 + x3 — x — 2 x3 — 2 x2 — 2 x + 2, or x2 + x — 2 = 0.

The latter equation may be solved by using factors.

The factors of x2 + x — 2 are x + 2 and x—1.

Solving the equation x -f 2 = 0, x = — 2.

Solving the equation x— 1=0, x = 1.

This gives the additional value x = 1
;
and it is evident that this does

not satisfy the given equation.

35. If both members of an equation be raised to the
same positive integral power (§ 66), the resulting equa-
tion will have all the solutions of the given equation,
and, in general, additional ones.

Consider, for example, the equation x = 3.

Squaring both members, we have

x2 = 9, or x2 - 9 = 0, or (x + 3) (x
-

3) = 0.

The latter equation has the root 3, and, in addition, the root — 3.

We will now consider the general case.

Let A = B (1)

be an equation involving one or more unknown numbers.

Raising both members to the »th power, n being a positive integer, we
have An = £*, or A* - Bn = 0. (2)

Factoring the first number (§ 103, VII),

(A - B) (A
n-* + A»~2B + • • • + 5"- 1

) = 0. (3)

Now, equation (3) is satisfied when A—B.
Whence, equation (2) has all the solutions of (1).

But (3) is also satisfied when
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An-l + An-TB 4. ... 4. 7^-1 =
;

so that (2) lias also the solutions of this last equation, which, in general,

do not satisfy (1).

EQUIVALENT SYSTEMS OF EQUATIONS

36. Two systems of equations, involving two or more un-

known numbers, are said to be equivalent when every solution

of the first system is a solution of the second, and every solu-

tion of the second is a solution of the first.

are equations involving two or more unknown numbers,
the system of equations

A = 0,

mA + nB = 0,

where m and n are any numbers, and n not equal to

zero, is equivalent to the first system.

For any solution of the first system, when substituted for the un-

known numbers, makes A = and B —
0.

It then makes ^4 = and mA + nB — 0.

Then, it is a solution of the second system.

Again, any solution of the second system, when substituted for the

unknown numbers, makes A = and mA + nB = 0.

It therefore makes nB = 0, or B = Q.

Since it makes J. = and B = 0, it is a solution of the first system.

Hence, the systems are equivalent.

A similar result holds for a system of any number of equations.

Either m or n may be negative.

38. If either equation, in a system of two, be solved
for one of the unknown numbers, and the value found be
substituted for this unknown number in the other equa-
tion, the resulting system will be equivalent to the first.

Let ]— ** £
(2)

f A = B,

be equations Involving two unknown numbers, t and f.

Let W be the value at .< obtained by solving (1).
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Let F = Q be the equation obtained by substituting E for x in (2).

To prove the system of equations

(x=E, (3)

1 F = G (4)
equivalent to the first system.

Any solution of the first system satisfies (3), for (3) is only a form of (1).

Also, the values of x and y which form the solution make x and E
equal ;

and hence satisfy the equation obtained by putting E for x in (2).

Then, any solution of the first system satisfies (4).

Again, any solution of the second system satisfies (1), for (1) is only
a form of (3).

Also, the values of x and y which form the solution make x and E
equal ;

and hence satisfy the equation obtained by putting x for E in (4).

Then, any solution of the second system satisfies (2).

Hence, the systems are equivalent.

A similar result holds for a system of any number of equations, in-

volving any number of unknown numbers.

39. The principles of §§ 27, 28, 29; 31, 33, 35, 36, and 37

hold for equations of any degree.

40. In the solution of an equation of Exercise 1, we replaced
each equation by an equivalent one more easily solved for the

unknown number.

41. Elimination is the process of deriving from a system of

two or more equations, a system containing one less unknown
number than the given system.

There are several methods of elimination, each method de-

pending on a process which wrill form a second system equiva-

lent to the first.

42. A system of equations is called Simultaneous when each

contains two or more unknown numbers, and every equation
of the system is satisfied by the same set, or sets, of values

of the unknown numbers
; thus, each equation of the system

Jx + y = 6,

ix— y= 3,

is satisfied by the set of values x = 4, y = 1.
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A Solution of a system of simultaneous equations is a set of

values of the unknown numbers which satisfies every equation
of the system ;

to solve a system of simultaneous equations is

to find its solutions.

Ex. Solve (1) 2x + 6y = 9, ]

(2) x - y = 1, J

(1) 2x + 5y = %\
(8) 5x-5*/ = 5, J

- 0) 2* + 6|f = 9,
]

2s + 5y = 9,1

(4) (2a; + 5?/)+ 5s- by =9 + 6, j
' 7* = 14, J

System II is equivalent to system I, and system III is

equivalent to system II.

System III gives the required solution since (4) gives x = 2

and this value substituted in (1) gives y = 1.

Similarly it may be shown that elimination by substitution

and by comparison involve the deriving of equivalent systems
from the given system (§§ 37, 38).

Unless the equations of a given system are independent a

solution is not possible.

43. If two equations, containing two or more unknown num-

bers, are not equivalent, they are called Independent.

Consider the equations
(x + y = 5, (1)

1 x + y = 6. (2)

It is evidently impossible to find a set of values of x and y which shall

satisfy both (1) and (2).

Such equations are called Inconsistent.

EXERCISE 4

Solve the following equations, using Addition or Subtrac-

tion, Substitution or Comparison :

3x+ 5y= 21.
2 <x-2y = 9.

x-2y= 8, I 2 x-y = 12.



5-

6.

7-

8.

Ax- 3?/ = 1.

6 a; + 15?/= 8.

G a? + 9 = 3 ?/.

y = 4 + x.

3 a - 3 # = - 12.

3 x —
-J- y = 17.

3x-2y = l%.

x=2y.
i ra + § n = — 2.

3 m + 12 = - 4 n.

S + 4:V= — 1.

EQUIVALENT EQUATIONS

+ 2

19

1.

10.

ii.

12.

*3-

= ^s-16.

f2

M-

15.

16.

i7-

18.

(x-3y)-
2 x— y

2

f-Sf

[17 />
— 7

1 '_ <=j>-3q.

I 8j> + g«=15.

[3^+ "^zl/ = 25.
3

|l5-2a+^=0.
5

fll*=W+ l&

l2*-t*= 10.

5.

2#
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19.
2 a% — 4 by = a2 — ab -f 2 62

.

gg-f-y.

fr**-*
-l = c + d. I a? v 1A o

20. J 4.
— = 10f .

[ 2 # — y = 5 c — Id.

22. If 5 in. be added to the length and 3 in. to the breadth

of a certain rectangle, the area is increased by 120 sq. in., but

if 1 in. be subtracted from the length and 2 in. from the breadth,

the area is decreased by 70 sq. in. Find its dimensions.

23. 2 cu. ft. of water and 4 cu. ft. of ice together weigh
355 lb. The difference between the weights of 3 cu. ft. of

water and 2 cu. ft. of ice is 72 lb. 8 oz. Find the weights of a

cubic foot of each.

24. A masonry contractor held back $132.50 of the wages
due his men. His bricklayers earned $ 3 per day, and his hod

carriers $ 1.75 per day. Their combined wages for a day were

$ 256.25. He retained $ 1.50 from each bricklayer and $ 1 from

each hod carrier. How many carriers did he employ ?

25. A man rows a certain distance down stream at the rate

of 33 mi. an hour in 3^- hr. In returning it takes him 16 hr. to

reach a point 5 mi. below his starting point. Find the rate of

the current.

26. Two trains start toward each other, one from New York,
the other from Chicago. They meet in 10 hr., 40 min., the

distance between the two cities being 960 mi. If the first

train starts 3 hr. earlier than the second train, they will meet

9£ hr. after the second train starts. Find the rate of each

train.

27. A number lies between 300 and 100. If 18 is added to

the number, the last two digits change places with each other,

and if the number be divided by the number expressed by the

first two digits, the quotient is 10 T̂ . Find the number.
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28. Find two numbers whose difference is 93 and whose sum
divided by the smaller number gives a quotient of :

7
\

29. By the law of levers, the product of the weight Wx by
the distance from W

x
to the fulcrum, F, is equal to the product

of the weight W2 by the dis- ir, Jr.,

tance from W2 to the fulcrum. '

A board resting across a pole balances when a 60-lb. boy is on

one end and a 100-1 b. boy on the other end. The board will

also balance if a 120-lb. boy sits 2 ft. from one end and a 60-lb.

boy sits 2 ft. from the other end. Find the length of the board.

30. If a regular hexagon is circumscribed about a given

circle, the difference between the areas of the hexagon and

circle is 32.24, and the sum of their areas is 660.56. Find the

radius of the circle.

GRAPHICAL, REPRESENTATION

44. A drawing or picture of given data or of an equation is

often of value.

45. Descartes (1596-1650) was the first mathematician to

apply measurement to equations.

It is impossible to locate absolutely a point in a plane. All

measurements are purely relative, and all positions in a plane
or in space are likewise relative. Since a plane is infinite in

length and breadth, it is necessary to have some fixed form

from which one can take measurements. For this form,

assumed fixed in a plane, Descartes chose two intersecting

lines as a coordinate system. Such a system of coordinates

has since his time been called Cartesian. It will best suit our

purpose to choose lines intersecting at right angles.

46. The Point. If we take any point M, its position is

determined by the length of the lines QM—x and PM?*p,
parallel to the intersecting lines OX and OF (Fig. £). The

values x= a and y = h will thus determine a point. The unit

of length can be arbitrarily chosen, but when once fixed remains



22 ALGEBRA

Y

Fig. 2.

the same throughout the problem under discussion. QM= x

and PM=y, we call the coordinates of the point M. x, measured

parallel to OX, is called the abscissa,

y, measured parallel to OF, is the

ordinate. OX and OFare the coordi-

nate axes. OX is the axis of x, also

called the axis of abscissas. OF is

the axis of y, also called the axis of

ordinates. 0, the point of intersec-

tion, is called the origin.

Two measurements are necessary
to locate a point in a plane.

For example, x = 2 holds for any point on the
, t ty a

line AB (Fig. 2). But if in addition we demand

that y = 3, the point is fully determined by the in-

tersection of the lines AB and CD, any point on

CD satisfying the equation y = 3.

47. The Line. Consider the equation

x + y = 6.

In this equation, when values are assigned to x, we get a value

of y for every such value of x. When x =0, y=6; x=l, ?/
= 5;

x — 2, y = 4
;
x = 3, y= 3

;
x = 6, y = 1

; etc., giving an infinite number

of values of x and 2/ which satisfy the equation.

Laying off these values on a pair of axes, as shown in

§ 46, we see that the points whose coordinates satisfy this

equation lie on the line AB (Fig. 3). It is readily seen that

there might be confusion as to the direction from the origin

in which the measurements should be taken. This is avoided

by a simple convention in signs. Negative values of x are

measured to the left of the ?/-axis, positive to the right. In

like manner, negative values of y are measured downward

from the #-axis, positive values upward. XO F, VOX'. X'OY',

Y'OX, are spoken of as the first, second, third, and fourth

quadrants respectively. (See Fig. 2.)

r>y plotting other equations of the first degree with fcwo un-

known quantities it will be seen that such an equation always
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represents a straight line. This line All
| Fig, 3) is called the

graph of x+ y=*6 and is the locus of all the points satisfying

that equation.

48. Now plot two simultaneous equations of the first degree

on the same axes, e.g. x + y = 6 and 2 x — 3 y = — 3
( Fig. 1 ).

We see that the coordinates of the point of intersection have

the same values as the x and y of the algebraic solution of the

equations.

This is a geometric or graphical reason why there is but one

solution to a pair of simultaneous equations of the first degree

with two unknown numbers. A simple algebraic proof will

be given in the next article. Hereafter an equation of the

first degree in two variables will be called a linear equation.

A
>
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(1)

(2)

coordinates of each point of intersection of the graphs being
values of x and y which satisfy both equations.

50. It is well to introduce the subject of graphs by the use

of concrete problems which depend on two conditions and

which can be solved without mention of the word equation.

Professor F. E. Nipher, Washington University, St. Louis, proposes
the following :

t; A person wishing a number of copies of a letter made, went to a

typewriter and learned that the cost would be, for mimeograph work :

1 1.00 for 100 copies,

$2.00 for 200 copies,

$3.00 for 300 copies,

$4.00 for 400 copies, and so on.

" He then went to a printer and was made the following terms :

$2.50 for 100 copies,

$3.00 for 200 copies,

$3.50 for 300 copies,

$4.00 for 400 copies, and so on, a rise of 50 cents

for each hundred.
"
Plotting the data of (1) and (2) on the same

axes, we have :

M The vertical axis being chosen for the price-units,

the horizontal axis for the number of copies.

"Any point online (1) will determine the price
for a certain number of mimeograph copies. Any
point on line (2) determines the price and cor-

responding number of copies of printer's work."'

Numerous lessons can be drawn from this problem. One is

that for less than 400 copies, it is less expensive to patronize
the mimeographer. For 400 copies, it does not matter which

party is patronized. For no copies from the mimeographer,
one pays nothing. How about the cost of no copies from the

printer? Why?
The graph offers an excellent method for the solution of

indeterminate equations in positive integers.

Ex. Solve 3x+ 4ysm22 for positive integers. Plotting
the equation, we have
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Solve the following by means of graphs:

I 2 x — 5 //
= — 16.

I 3 x •+• 7 7/
= 5.

(

a?-5 2x-7/-l_2?/-2

hi
3

*(y)

+» — l

4

3 y -02

-44

F(»).w

LB

_ 7y-24
'
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PROPERTIES OF INEQUALITIES

56. An inequality will continue in the same sense
after the same number has been added to, or subtracted
from, both members.

For consider the inequality a>b.
By § 53, a — b is a positive number.

Hence, each of the numbers

{a + c)
—

(&+.c), and (a
—

c)
— (b — c)

is positive, since each is equal to a — b.

Therefore, a + c > b -f c, and a — c > b — c. (§ 53)

57. It follows from § 56 that a term may be transposed
from one member of an inequality to the other by chang-
ing

1 its sign.

If the same term appears in both members of an inequality, affected

with the same sign, it may be removed.

58. If the signs of all the terms of an inequality be
changed, the sign of inequality must be reversed.

For consider the inequality a — b > c — d.

Transposing every term, d— c>b — a. (§57)

That is, b — a < d — c.

59. An inequality will continue in the same sense
after both nembers have been multiplied or divided by
the same positive number.

For consider the inequality a > b.

By § 53, a — b is a positive number.

Hence, if m is a positive number, each of the numbers

mCa — b) and
a ~~

\ or ma— mb and — ,
is positive.m m m

Therefore, ma>m?>, and — >— «

m m

60. It follows from §§ 58 and 59 that if both members of

an inequality be multiplied or divided by the same nega-
tive number, the sign, of inequality must be reversed-

61. If any number of inequalities, subsisting in the

same sense, be added member to member, the resulting

inequality will also subsist in the same sense.
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For consider the inequalities a > ft, a' > ft', a" > ft", •••.

Each of the numbers, a — ft, a' — ft', a" — ft", •••, is positive.

Then, their sum a — ft + a' — ft' + a" — ft" + •••,

or a + a' + a" + ••• -
(ft + ft' + ft" + •••),

is a positive number.

Whence, a + a' + a" + ••• > ft + ft' + b" + ....

If two inequalities, subsisting in the same sense, be subtracted mem-
ber from member, the resulting inequality does not necessarily subsist in

the same sense.

Thus, if a > ft and a 1 > ft', the numbers a — ft and a' — ft' are positive.

But (a
—

ft)
—

(a'
—

ft'), or its equal, (a
—

a')
—

(ft
-

ft'), may be posi-

tive, negative, or zero
;
and hence a— a' may be greater than, less than,

or equal to ft
— 6'.

62. If a > b and a' > ft',
and each of the numbers a, ar

, &, b\

is positive, then
aa< <bb'.

Since a' > ft', and a is positive,

aa'>ab' (§59). (1)

Again, since a>ft, and ft' is positive,

aft' > ftft'. (2)

From (1) and (2), aa' > ftft'.

63. If we have any number of inequalities subsisting in the

same sense, as a > b, a' > ft',
a" > ft", •••, and each of the num-

bers a, a', a", •••,&, 6', &", •••, is positive, then

aa'a" ... > bb'b" ....

For by § 62,. aa'>bb'.

Also, a" > ft".

Then by § 62, aa'a" > ftft'ft".

Continuing the process with the remaining inequalities, we obtain

finally aa'a"-- > ftft'ft".-.

64. Examples.

i. Find the limit of x in the inequality



9x
4x
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4 . (x-3)(x + 4)(x-5)< (x + l)(x-2)(x-3).

5. a\x - 1)< 2 62

(2 x
-

1)
-

a&, if a - 2 & is positive.

Find the limits of x and y in the following :

ox-\- 6 y < 45.
[
7 * — 4 y > 11 .

3 x- 4 y = — 1 1 . J
3 .e + 7

//
= : 15 .

8. Find the limits of x when

3 a;- 11 < 24- 11 a, and5s+ 23<20a;+&

9. If 6 times a certain positive integer, plus 14, is greater

than 13 times the integer, minus 63, and 17 times the integer,

111 in 1 is 23, is greater than 8 times the integer, plus 31, what is

the integer?

10. If 7 times the number of houses in a certain village,

plus 33, is less than 12 times the number, minus 82, and 9

times the number, minus 43, is less than 5 times the number,

plus 61, how many houses are there?

11. A farmer has a number of cows such that 10 times

their number, plus 3, is less than 4 times the number, plus

79; and 14 times their number, minus 97, is greater than 6

times the number, minus 5. How many cows has he ?

12. Between what limiting values of x is x2
-f 3 x < 4 ?

13. Between what limiting values of x is x2 < 8 x — 1 5 '.'

14. Between what limiting values of x is 3 x2 + 19 as < — 20 ?

65. If a and b are unequal numbers,

a*+V> 2ab.

For (a
-

?0'
2 >° 5 6*i a

'

2 ~ 2 < fh + l)2 >°-

Transposing
- 2 ab, . a 2 + V2 >2 ab.

1. Prove that, if a does not equal 3,

(a-r-2)(tt-2) >0a- L8,
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By the above principle, if a does not equal 3,

a2 + 9>6a.

Subtracting 13 from both members,

a2 - 4 > (3 a - 13, or (a + 2) (a
-

2) > a - 13.

2. Prove that, if a and & are unequal positive numbers,

as + 63 > a2b + 62
a.

We have, a2 + b2 >2 ab, or a2 - ab + &2 > a&.

Multiplying both members by the positive number a + &,

a3 + &3>a2& + &2a.

EXERCISE 7

i. Prove that for any value of x, except §,

3a;(3a;-10)>-25.

2. Prove that for any value of x, except $-,

*
4 o;(aj

-
5) > 8 x - 49.

3. Prove that for any values of a and b, if 4 a does not

equal 3 6,
(4a+ 3 6)(4 a - 3&)>66(4a - 36).

4. Prove that for any values of x and y, if o x does not

equal 4 y,
'

5x(ox-6y)>2 y(5 x-S y).

Prove that, if a and b are unequal positive numbers,

5. a8b + ab* > 2 a2b2
.

6. a3 +a2b+ab2 +bs >2ab(a + b).
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III. EXPONENTS

66. An Exponent is a number written at the right of and

above a number.

It is customary to speak of the number as raised to the

power indicated by the exponent.

67. The laws we shall develop are to hold for any exponent,

whether integral, fractional, positive, negative, or zero.

68. The number raised to the power is called the Base.

69. Meaning of a Positive Integral Exponent.

a8 = a • a:•

• a.

a4 = a • a • a • a.

Similarly if m is a positive integer,

am = a • a • a • • • • torn factors.

The following results have been proved to hold for any

positive integral values of m and n :

am xan = am+n (F. C.)
*

(1)

(a-)"
= amn (F. C.) (2)

70. Meaning of a Fractional Exponent.

Let it be required to find the meaning of s
.

If (1), § 69, is to hold for all values of m and n,

5 5 5 5,5,5 .

a 5 x a* x a* = a* * * = a5
.

Then, the f&trc! power of a* equals a5
.

•

Hence, a* must be the cube root of a5
,
or a 3 = ^a5

.

We will now consider the general case. p

Let it be required to find the meaning of aq
,
where j> and q

are any positive integers.

* F. C. refers to Wells's First Course in Algebra.
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If (1), § 69, is to hold for all values of m and n,
P P P * + ? + ?+. "to* term* lXq
aq xaq xaq x •• • to q factors = aq 9 q = aq = a*\

7'

Then, the gth power of aq
equals oF.

p p

Hence, aq must be the qth. root of ap
,
or aq=

^/^p9

Hence, in a fractional exponent, the numerator denotes
a r5ower, and the denominator a root.

For example, a* = -\/a?-, b^ = V&5
;
x* =-%/x\ etc.

A Surd is the indicated root of a number, or expression,
which is not a perfect power of the degree denoted by the

index of the radical sign ;
as V2, -\/5 9

or v^ -}- y. ,

The degree of a surd is denoted by its index
; thus, V«5 is a

surd of the third degree.

A quadratic surd is a surd of the second degree.

71. Meaning of a Zero Exponent.

If (1), § 69, is to hold for all values of m and n, we have

am x a = am+0 = am.

Whence, a =— = 1.
am

We must then define a as being equal to 1.

72. Meaning of a Negative Exponent.

Let it be required to find the meaning of a~3
.

If (1), § 69, is to hold for all values of m and n,

a~3 x a3 = a"3+3 = a° = 1 (§ 71).

Whence, a-3 =— •

a'

We will now consider the general case.

Let it be required to find the meaning of a~% where s repre-

sents a positive integer or a positive fraction.
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If (1), § 69, is to hold for all values of m and n,

a~ 8 xa8 = a~s+8=a() = 1 (§ 71).

Whence, a~8 = — •

a8

We must then define a~8 as being equal to 1 divided by a8
.

For example, a~2 = ~; a~i =—
;
3x~1

y~^ =—-; etc.,
a"

a* xy*

73. It follows from § 72 that

Any factor of the numerator of a fraction may be
transferred to the denominator, or any factor of the

denominator to the numerator, if the sign of its ex-

ponent be changed.

Th a2bs = bs ^ aWc-1

^a
2(T4

teUS
'

cd4 a~ 2cd4
d*

~
b~3c

'

EXERCISE 8

Express with positive exponents :

i. a~ 2
bs . 5. 3xyz~

2
. 9. 7 x4

y~
2
z.

2. xiy~
2
z.' 6. 5c~^dk 10. 4 a~Gb~8ck

3. 2m~4
w. 7- a-2

xy~\ 11. 8wV.

4. a~ lb4c-\ 8. 3jr*?*. 12. rV~*fi

Transfer all literal factors from the denominators to the

numerators:

6x*
I3- y
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Transfer all literal factors from the numerators to the

denominators :

21.
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EXERCISE 9

Multiply the following :

i. a8

by <H. 4- 2</W* by </tfb.

3 \
2. 3 xly'h by aT^z

3
. 5- ^2/ by -37— p

# % 2

3. 2 c*d by ST-\/c5* 6. a46c* by afc-V*.

7. 3 x~y by - 2 afy
;!

*.

8. x* + »^ + y^ by z* —
jff.

9< 3 x _ 1 + ar1

by 5 a + 2.

10. «*— 2^'2/
r
+2/

2
by V#-f V#-

11. x2 + 2 x — ar1 + 1 by x + ar 1 + 1.

12. p* + x — V# + 1 by -y/x + 1-

a:"
2

Divide the following :

13. a2

by a5
. l6 8 aib~i $j by 2 a-2fo3.

14. ar*?/ by aj~
3
?/

2
. 17. 5 mAn~% by 2 ra~%*.

15. 3y/xy
3

by x-*y-\ 18. a+2a*6* + & by a?+$.

19. m~* + 3 mrhfc + 3 m"^i + »' by m""2 + ti*.

20. 6 x2 - 6 x-2 - 12- 11 a; + 23 ar 1

by 2 x + 1 - 3 x~\

2i.9 a;*?/-
1 - 6 x%y-

2 -5 + 12 x'hj + 4 afty by 3 a; + 4^aTi/
2

22. 2^-7 a* + 4 af* - 11 + 12 a?* by 2 a?* + 4 - 3 xK

Find the values of the following:

23- ^)
_

\
* (8*)

1
-

, 29 . (.*fcfS
24. (m--)-'. 27. (-27)*.

1

25. (-v'aPp. 28. (8~*)
4
, 30. (VV)

v -
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75. To prove the result

(ab)
n = anbn

,

for any fractional or negative value of n.

The proof of this result in the case where n is any positive

integer, was given in F. C.

I. Let n =s where p and q are any positive integers.

[(o&)i]«
= (aby = a?b> (F. C). (1)

p p p p

(a~«b~«)
q = (a*)

q
(b*y = ap&*. (2)

From (1) and (2), [(a&)*]«
=

(a*6«)«.

Taking the gth root of both members, we have

p p p

(ab)
q = a*b«.

II. Let n = —
s, where s is any positive integer or positive

fraction.

Then, (a&)-= -i- = -L(t M, JV) = o-*^.
(ab)

s a8bs

EXERCISE 10

Find the values of the following :

1. (a
s

b^)
4

. 6. (25a
4

)~*.

1 \_f 7. (32al\/F^)i
2.

'

x '

Zy J
8. (343 Vc-'SyK

3. (p'V'T 1
. f%xf^

\ 16 m~4

4. (a-V^c-
1

)-",

10.

5. (Vafy-*)*. \4afV 5
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EXERCISE 11

Illustrative Examples.

Ex. 1. Reduce V| to its simplest form.

A surd is said to be in its simplest form when the expression

under the radical sign is rational and integral, is not a perfect

power of the degree denoted by any factor of the index of the

surd, and has no factor which is a perfect power of the same

degree as the surd.

§
= 28 . To be a perfect square the exponents of the factors of the

denominator must be even numbers. Hence multiplying both terms of

the fraction by 2, we have,

vTI
T'Vs=Vts s

Ex. 2. Reduce V25 to its simplest form.

v/25=\/V25= V5.

Ex. 3. Express 5V7 entirely under the radical sign.

5V7= V5V7, or (5
2

) 1(7)1-

By § 75, (5
2

)i(7)l = (5
2

.

7)1 = V175.

Ex. 4. Reduce (5)1, -\/3 to the same degree.

The L. C. M. of the indices of the roots is 12. Hence,

r^ =^
/

3* = 3i\

The surds are now of the twelfth degree.

Ex. 5. Find the product of V45 and V72.

(45)1 (72)1 = (32
.

6)1
.

(3
j

. 23)i
_

(2
2

. 34
. 5 .

2)*

= 2.3'2

(5.2)2 = 18Vl0.

Reduce the following to their simplest form :

* -v^-
4- (72)1. 7 . 5(32 aV// >'.

2. (27 a8

)*. 5 . ^128 a4
ft*. 8. 7(80)1.

3. (45)1. 6. 3V25()a2
.f. 9. (CSC,)'.
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10. 4\Vl86\ I3 . (x-yXa&m8

)*.

ii. V4a2

-5arty. 14. (4 x
2 - 24 xb + 36 brf.

12. (a
3 -2a2

6-fa62

)l 15. V(a?+3a?+2)(a?+6a?+8).

** (*)*• 18. (i)*. 20. 2V^.
17. ()*. 19. Ki)*-

2I
/8a«\4

75;

22 . 1(1^)K 24. J^ZI.
mV25n2

y *p-2q

, t \( 1 \ 4
** ! A«

2 -&2

\
}

Express entirely under the radical sign :

26. 2V5.
,

'

/ x
'

\i
31. (a? + y) )

.

27. 3(2)*.
V-y-J

28. a(bc2

y. 32. Vm2
-f mn — 2 n\

_____ m — n
29. 5 xV3 #y. ,

c + 4 /c2 + 5c- 6V
30. (a+ 8ft)f—

1—V- 33 '

c-1^4-8c + 16y
'

\a + o bj

Reduce the following to equivalent surds of the same degree :

34. V3, a/4. 37. 5Vx, 3 Vary.

35. (2)4, (i)i (5)i. 3»- («-»)*, («+*)*; &+*fy.

36. .(afy)*, («y)*, (®Y)*. 39- v^ + y
8
, Vz4 -#4

.

Simplify the following :

40. (18)4 + 3(50)4-2(72)4. 42. V^ + V'250 -2\Vl28.

41. 2(27)4-5(48)4+11(75)4. 43. f (12)*- f(*)* + (3)i

44. 8^80-2^/405 + 18^.
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45. (24 a*x) * + 2 (54 ax) ' - 5 (6 a*x)
•

.

fatmFY famn*V . /aV3\*
46 '

[*r] "fawj
+W '

47- a) i + 3(TV)
i + ^V56.

48. ^^^~3(4a2x2

)*+ 5-v/8^V.

(a + 2/)

2 x2 -y\ x J

Multiply the following:

50. V90 by V63. 56. Va 3^ by ^ax^f.

51. (35)* by (105)*. , 57. 2(5)* by 3(15)1

52. -^54 by -v^S. 58. 5^40 by 6(o)\

53. (3)* by (2)1 ftayi ,jtf\l / 2 y\1

54. a/2 by -^4. W A27&; \15aJ

'

,55- (*)* by (I)* by (f)*. 60. VS^S •

(2 a
2

)*
.

(6 r
5

)*.

61. 3 (2)*
- 5 (3)4 by 4 (2)* + 3 (3)1

62. 5V7 + 6V2 by V7 - 4V2.

63. 2 (8 a;)*
- 9 (2 #)*' by (2 a)

* - 3 (2 y)*.

64. 3 (a
-

1)* + 4(2 a + 5)* by 2 (a- 1)*
-

10(2 a + 5)*.

65. 5Vf-2V|by4Vf + 9V|.

Divide the following :

66. V72byV6. 7o. (8 a*)'* by (16 a
4

)*.

67. 2Vl25by4V5. 7?- V722a? by V2j^
. 72. (4)* by (*)*.

68. (192)* by (12)*.
• ,—1

T/
,,_V ; y ^ ;

73. 8VaV by 6</ax*.

69. (512)* by (16)*. 74. (H)* by (9)5.



EXPONENTS 41

Find raises of the following:

75- (?VS)*. 80. V f/a* - 2 a/;+7?'.

76. [1(4)*]*. 8l . [8f^(5)ij,

77- (3s/2~o^)
4
. 82. (4V5-2V7/-'.

78. t(S)¥- 83. VK>)
l-*(?)

l^(*r + :>(^l

79. [(3a)ij* 84. (7Vn-5V3)(7Vn + 5V:V).

Express each of the following with a rational denominator :

85. 4-
'

89. !±2&
V2 v

2-V3

86. 1*.
9o. 3(4)4^2^.

V5 2(3)*+ (10)*

^>
2 +»* 9

(a+ 6)*- («_*)*

88.
a + ^

-

92.
(^ +^ + (^

2
-.y

2P
a - 6* (a

2 + y*)*
-

(x*
- y

2
)*

LOGARITHMS

76. Any number may be expressed as a power of some num-

ber chosen as base.

For example, 4 = 2 2

,
8 = 23

,
64 = 26

,
etc. Numbers between

4 and 8 would be expressed by 2n where rt is 2 plus some frac-

tional number. In suclr a case the exponent is called the

Logarithm of the Number to the Base 2.

E.g. 2 is the logarithm of 4 to the base 2
;
3 is the logarithm of 8 to

the base 2, etc.

77. The Common System of logarithms has 10 for its base.

Every positive arithmetical number may be expressed,

exactly or approximately, as a power of 10.

Thus, 100 = 102

;
13 = 1011139

-; etc.
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When thus expressed, the corresponding exponent is called

its Logarithm to the Base 10.

Thus, 2 is the logarithm of 100 to the base 10
;
a relation

which is written log 10 100 = 2, or simply log 100 = 2. •

Logarithms of numbers to the base 10 are called Common

Logarithms, and, collectively, form the Common System.

They are the only ones used for numerical computations.

78. Any positive number, except unity, may be taken as the

base of a system of logarithms ; thus, if ax = m, where a and

m are positive numbers, then x = logft
m.

A negative number is nut considered as having a logarithm.

70. By §§ 71 and 72,

10° = 1, io- 1 ^ — =
.1,

10

10* =10, io-« = A- = .oi,

102 = 100, 10- 3 = -i-- = .001, etc.
103 '

Whence, by the definition of § 76,

log 1 = 0, log .1 = - 1 = 9- 10,

log 10 = 1, log .01 = - 2 = 8 - 10,

log 100 = 2, log .001 = - 3 = 7 - 10, etc.

The second form for log.l, log. 01, etc., is preferable in practice.

If no base is expressed, the base 10 is understood.

80. It is evident from § 79 that the common logarithm of

a number greater than 1 is positive, and the logarithm of a

number between and 1 negative.

81. If a number is not an exact power of 10, its common

logarithm can only be expressed approximately; the integral

part of the logarithm is called the characteristic, and the deci-

mal part the mantissa.

For example, log 13 = 1.1139.

Here
;
the characteristic is 1, and the mantissa .1139.
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A negative logarithm is always expressed with a positive

mantissa, which is done by adding and subtracting 10.

Thus, the negative logarithm — 2.5863 is written 7.4137 — 10.

In this case, 7 — 10 is the characteristic.

The negative logarithm 7.4187 — 10 is sometimes written 3.4137 ;
the

negative sign over the characteristic showing that it alone is negative, the

mantissa being always positive.

For reasons which will appear, only the mantissa of the

logarithm is given in a table of logarithms of number
;
the

characteristic must be found by aid of the rules of §§ 82

and 83.

82. It is evident from § 79 that the logarithm of a number

between ± and 10 is equal to + a decimal
;

10 and 100 is equal to 1 + a decimal
;

100 and 1000 is equal to 2 -f- a decimal
;

etc.

Therefore, the characteristic of the logarithm of a number

with one place to the left of the decimal point is
;
with two

places to the left of the decimal point is 1
;
with three places

to the left of the decimal point is 2
;

etc.

Hence, the characteristic of the logarithm of a number
greater than 1 is 1 less than the number of places to the
left of the decimal point.

For example, the characteristic of log 906328.51 is 5.

83. In like manner, the logarithm of a number between

1 and .1 is equal to 9 + a decimal — 10
;

.1 and '

.01 is equal to 8 -f a decimal — 10
;

.01 and .001 is equal to 7 -j- a decimal — 10
;

etc.

Therefore, the characteristic of the logarithm of a decimal

with no ciphers between its decimal point and first significant

figure is 9, with —10 after the mantissa; of a decimal with

one cipher between its point and first significant figure is 8,

with —10 after the mantissa; of a decimal with two ciphers

between its point and first significant figure is 7, with — 10

after the mantissa; etc.
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Hence, to find the characteristic of the logarithm of a

number less than 1, subtract the number of ciphers be-

tween the decimal point and first significant figure from

9, writing — 10 after the mantissa.

For example, the characteristic of log .007023 is 7, with — 10

written after the mantissa.

PROPERTIES OF LOGARITHMS

84. In ami system, the logarithm of 1 is 0.

For by § 71
,
cfi** 1

; whence, by § 78, loga l = 0.

85. In any system the logarithm of the base is 1.

For, a1 = a
; whence, loga a = 1.

86. In any system whose base is greater than 1, the logarithm

of is — oo .*

For if a is greater than 1, a_Q0 =— =— — 0. (The discns-
«* . oo

sion of this form will be found in § 127.)

Whence, by § 78, log„ = — go.

No literal meaning can be attached to such a result as loga = — oo
;

it

must he interpreted as follows :

If, in any system whose base is greater than unity, a number approaches
the limit 0, its logarithm is negative, and increases indefinitely in abso-

lute \alue.

87. In any system, the logarithm of a product is equal to the

sum of the logarithms of its factors.

Assume the equations

ax = m\ faj
= log rt

w,

[; whence, by § <8,
{

a* = n
] [//

= loga n.

Multiplying the assumed equations,

ax x av = mn, or ax+y = mn.

Whence, loga mn = x -f- y = loga m -+- log,, ».

* oo stands for a number greater than any aarigned number. Sec § l *J<>.
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In like manner, the theorem may be proved for the product
of three or more factors.

By aid of § 87, the logarithm of a composite number may
be found when the logarithms of its factors are known.

Ex. Given log 2 = .3010, and log 3 = .4771
;
find log 72.

log 72 = log (2 x 2 x 2 x 3 x 3)

= tog 2 -f log2 4- log2 4- log3 4- log3

= 3 x log 2 4- 2 x log3 = .9030 4- .0542 = 1.8572.

EXERCISE 12

Given log 2 = .3010, log 3 = .4771, log 5 = .6990, log 7 = .8451,

find :

i. log 15. 4. log 125. 7. log 567. 10. -log 1875.

2. log 98. 5. log 315. 8. log 1225. 11. log 2646.

3. log 84. 6. log 392. 9. log 1372. 12. log 24696.

88. In any system, the logarithm of a fraction is equal
to the logarithm of the numerator minus the logarithm
of the denominator.

Assume the equations

ax = ml
, [# = loga ra,

\ ; whence, \

ay = n
J [y = \oga n.

Dividing the assumed equations,

— = — or ax y = — •

ay n' n

Whence, loga
-= x— y= logam — loga/i.

Ex. Given log 2 = .3010; find log 5.

log 5 = log i? = log 10 - log 2 = 1 - .3010 = .6990,
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EXERCISE 13

Given log 2 = .3010, log 3 = .4771, log 7 = .8451, find :

i. log-
1

/. 4- log 245. 7. log |f. 10. log-
3 ™-

2. log-
2
f. 5. log85f. 8. log 375. 11. log 46f .

3. log 11$. 6. log 175. 9. log |f 12. log 2ft-

89. In any system, the logarithm of any power of a
number is equal to the logarithm of the number multi-

plied by the exponent of the power.

Assume the equation ax = m
; whence, x = loga m.

Raising both members of the assumed equation to the jith

power, aPX _ mP . wjience? i gamv —pX —p i gom

90. In any system, the logarithm of any root of a num-
ber is equal to the logarithm of the number divided by
the index of the root.

For, logaVm = logtt(m r
)
= -

logam(§ 89).

91. Examples.

1. Given log 2 = .3010
;
find log 2*.

log I* =1* log 2 = - x .3010 = .5017.
o o

To multiply a logarithm by a fraction, multiply first by the numerator,
and divide the result by the denominator.

2. Given log 3 = .4771
;
find log V3.

log ^ = !°£» =i™ =.0506.
8 8

3. Given log 2 = .3010, log 3 = .4771, find log (2* x 3*).

By § 87, log (2* x 3*) a log 2* + log 3*

= -
log 2 + -

log 3 = .1003 + .5964 = .6067.
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EXERCISE 14

Given log 2 = .3010, log 3 = .4771, Log 7 = .g4&, find;

I.
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93. Ex. Given log 2 =.3010, log 3 =.4771
;
find log .00432.

We have log 432 = log (2* x 8*) = 4 log 2 + 3 log 3 = 2.0353.

Then, by § 92, the mantissa of the result is .6858.

Whence, by § 83, log .00432 = 7.0353-10.

EXERCISE 15

Given log 2 = .3010, log 3 = .4771, log 7 = .8451, find :

1. log 2.7. 6. log .00000680. n. log 337.5.

2. log 14.7. 7. log .00125. 12. log 3.888.

3. log M. 8. log 5670. 13. log (4.5)
8
.

4. log .0162. 9. log .0000588. 14. log -y/SA.

5. log 22.5. 10. log .000864. 15. log (24.3)1

USE OF THE TABLE

94. The table (pages 50 and 51) gives the mantissas of

the logarithms of all integers from 100 to 1000, calculated to

four places of decimals.

95. To find the logarithm of a number of three figures.

Look in the column headed " No." for the first two signifi-

cant figures of the given number.

Then the required mantissa will be found in the correspond-

ing horizontal line, in the vertical column headed by the third

figure of the number.

Finally, prefix the characteristic in accordance with the

rules of §§ 82 and 83.

For example, log 108 = 2.2253 ;

log .344 - 9.5300 - 10
;
etc.

For a number consisting of one or two significant figures,

1 he column headed may be used.

Thus, let it be required to find log 88 and log 9.

\\y §
(

,)2, log 83 has the same mantissa as log 830j and log 9

the same mantissa as log 900.

Hence, log 83 = 1.9191, and log 9 =* 0.9542,
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96. To find the logarithm of a number of more than three

figures.

i. Required the logarithm of 327.6.

We find from the table, log 327 = 2.5145,
. log 328 = 2.5150.

That is, an increase of one unit in the number produces an increase of

.0014 in the logarithm.

Then an increase of .0 of a unit in the number will increase the

logarithm by .6 x .0014, or .0008 to the nearest fourth decimal place.

Whence, log 327.6 = 2.5145 + .0008 =
2.£153.

In rinding the logarithm of a number, the difference between the next

less and next greater mantissae is called the tabular difference ; thus, in

Ex. 1, the tabular difference is .0014.

The subtraction may be performed mentally.

The following rule is derived from the above :

Find from the table the mantissa of the first three

significant figures, and the tabular difference.

Multiply the latter by the remaining figures of the

number, with a decimal point before them.
Add the result to the mantissa of the first three

figures, and prefix the proper characteristic.

In finding the correction to the nearest units' figure, the decimal por-

tion should be omitted, provided that if it is .5, or greater than .5, the

units' figure is increased by 1
; thus, 13.26 would be taken as 13, 30.5 as

31, and 22.803 as 23.

2. Find the logarithm of .021508.

Mantissa 215 = .3324 Tab. diff. = 21

2 .08

.3326 Correction = 1.68 = 2, nearly.

The result is 8.3326 - 10.

EXERCISE 16

Find the logarithms of the following :

i. 64. 5. 1079. 9. .00005023. 13. 7.3165.

2. 3.7. 6. .6757. 10. .0002625. 14. .019608.

3. 982. 7. .09496. 11. 31.393. 15. 810.39.

4. .798. 8. 4.288. 12. 48387. 16. .0025446.
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No.
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No.
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97. To find the number corresponding to a logarithm,

i. Required the number whose logarithm is i.0571.

Find in the table the mantissa 6671*

In the corresponding line, in the column headed "No.," we find 45,

the first two figures of the required number, and at the head of the

column we find 4, the third figure.

Since the characteristic is 1, there must be two places to the left of the

decimal point (§ 82).

Hence, the number corresponding to 1.6571 is 45.4.

2. Required the number whose logarithm is 2.3934.

We find in the table the mantissa 3927 and 3945.

The numbers corresponding to the logarithms 2.3927 and 2.3945 are

247 and 248, respectively.

That is, an increase of .0018 in the mantissa produces an increase of

one unit in the number corresponding.

Then, an increase of .0007 in the mantissa will increase the number by

T
7
3 of a unit, or .4, nearly.

Hence, the number corresponding 'is 247 + .4, or 247.4.

The following rule is derived from the above :

Find from the table the next less mantissa, the three

figures corresponding', and the tabular difference.

Subtract the next less from the given mantissa, and
divide the remainder by the tabular difference.

Annex the quotient to the first three figures of the

number, and point off the result.

The rules for pointing off are the reverse of those of §§ 82 and 83 :

I. If
— 10 is not written after the mantissa, add 1 to the characteristic,

giving the number ofplaces to the left of the decimal point.

II. If — 10 is written after the mantissa, subtract the positive part of

the characteristic from 9, giving the number of rijihcrs to be placed between

the decimal point and first significant figure.

3. Find the number whose logarithm is 8.5265 — 10.

52(>5

Next less mant. sa 5203
;
liunres corresponding, 880,

Tab. diff. 13)2. ()()(. IT, = .2, nearly.

1 3

70
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By the above rule, there will be one otpber to be placed between the

decimal point and first significant figure ; the result is .03362.

The correction can usually be depended upon to only one decimal

place ;
the division should be carried to two places to determine the last

figure accurately.

EXERCISE 17

Find the numbers corresponding to the following logarithms :

I.
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2. Find the value of
'

*

7984

By § 88, log^ = log 33(5.8 - log 7984.

log 336.8 = 12.5273 -10
log 7984 = 3.0022

Subtracting, log of result = 8i>251 - 10 (See Note 2.)

Number corresponding = .04218.

Note 2 : To subtract a greater logarithm from a less, or a negative

logarithm from a positive, increase the characteristic of the minuend by

10, writing — 10 after the mantissa to compensate.

Thus, to subtract 3.9022 from 2.5273, write the minuend in the form

12.5273 - 10
; subtracting 3.9022 from this, the result is 8.6251 — 10.

3. Find the value of (.07396)
5

.

By § 89, log (.07396)
5 - 6 X, log .07396.

log .07396 = 8.8690 - 10

»

5^

'

44.3450 - 50

= 4.3450 - 10 = log .000002213.

4. Find the value of ^.035063.

By § 90, log ^035063 = 1 log .035063.

log .035063 = 8.5449 - 10

3)28.5449 - 30 (See Note 3.)

9.5150 - 10 = log .3224.

Note 3 ; To divide a negative logarithm, write it in such a form that

the negative portion of the characteristic may be exactly divisible by the

divisor,* with — 10 as the quotient.

Tims, to divide 8.5449 — 10 by 3, we write the logarithm in the form

28.5449 - 30
; dividing this by 3, the quotient is 9.5150 - 10.

EXERCISE 18

A negative number has no common logarithm (§ 78)
;

if such numbers;

occur in computation, they may be treated ;is if they were positive, and

the sign of the result determined irrespective ol the logarithmic work.

Thus, in Ex. 3 of the following set, to tind the value of
( -96.86) X&S918

we find the value pi 96.86 x 3.8918, and put a — sign before the result.
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Find by logarithms the values of the following :

1.4.253x7.104. 4 54.029 X (-.0081487).

2. 6823.2 x .1634. 5 . .040764 x .12896.

3. (- 95.86) x 3.3918. 6. (-285.46) x (-.00070682).

„ 5978 -38.19
7 -

9J62*
I0 -

10792' '* (8«.08)«.

8 .
21^58. fl .

670.48
. ^ C09437)<.

45057 -5382.3

.06405 .000007913 ,o*okmr» I2 . k. (3.625V.
.002037 .00082375

Arithmetical Complement

99. The Arithmetical Complement of the logarithm of a num-

ber, or, briefly, the Cologarithm of the number, is the logarithm
of the reciprocal of that number.

Thus, colog 409 = log^ = log 1 - log 409.

log 1 = 10. - 10 (See Ex. 2, § 98.)

log 409= 2.6117

.-. colog 409= 7.3883-10.

Again, colog .067 = log-—- = log 1 — log .067
.067

log 1 = 10. - 10

log .067= 8.8261-10

•\ colog .067= 1.1739.

It follows from the above that the cologarithm, of a number

may be found by subtracting its logarithm from 10 — 10. _

The cologarithm may be found by subtracting the last significant figure

of the logarithm from 10 and each of the others from 0,
— 10 being written

after the result in the case of a positive logarithm.
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51384
Ex. Find the value of

8.708 x .0946

log
- 51384 = log L 51384 x-Lxi)b

8.708 x .01)40 V ^-< ()« .0M6/

:log .51384 -flog—— + log-
*

8.708 .0940

= log .51384 + colog 8.708 + colog .0946.

log .51384 = 9.7109 -10

colog 8.708 = 9.0001 -10

colog .0946 = 1.0241

9.7951 -10 = log .6239.

It is evident from the above example that, to find the loga-

rithm of a fraction whose terms are the products of factors, we

add together the logarithms of the factors of the numerator, and

the cologarithms of the factors of the denominator.

The value of the above fraction may be found without using cologa-

rithms, by the following formula :

log ^M = iog .51384 -log(8. 709 x .0946)
. 8. 709 x. 0946

8 5V J

e= log .51384 - (log 8.709 + log .0946).

The advantage in the use of cologarithms is that the written work of

computation is exhibited in a more compact form.

MISCELLANEOUS EXAMPLES

2^5
100. i. Find the value of

3*

log^? = log 2 + log i/6 + colog 3* (§ 99)

35
= log 2 + J log 5 + j colog 3.

log 2= .3010

IOg6= .6990; -3= .2330

colog 3 = 9.5229 - 10
; x 9 = 9.(1024 - 10

.1864 =!(»-!.:
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2. Find the value of J
1

/

--03296
.

yi 7.962

^ •fiBW =llog« = 1
(log .03296 - log 7.902).° * 7.902 3 7.962 3
V b y

log .03296 = 8.5180-10

log 7.962 = 0.9010

3)27.6170-30
9.2057- 10 = log. 1606.

The result is — .1606.

EXERCISE 19

Find by logarithms the values of the following:

2078.5 x .05834 (- .076917) x 26.3

f' .3583 x 34o
3 '

.5478 x (- 3120.7)

*

(J 6.08) x.1304 a
.8102 x (- 6.225) ,

'"

(- 0721) x(- 17.976)'

15. V6xvl6x^2.

6 f- _^18_\*1 '

V 8.7 x .0603J

•y/ .008546

-\/.0(>03867

8 (--14582)* ,

^/^00l' *?' 7^1000 -(.72346)*

17

IV. FACTORS

101. An irrational number is a numerical expression involv-

ing surds; as -^3, or 2 +V5 (§ 70).

102. A rational and integral expression is resolved into its

prime factors when further factoring would produce irrational

factors.
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103. In the First Course we considered the following eight

types of factorable numbers:

TYPE FORMS

I. a2 -b* =(a + b)(a-b).

II. a2 + 2a6 + 62 ^(« + 6)(a+6),
a1 -2ab + b2 = (a - b) (a-b).

III. as
2 + ate + 6.

IV. aas'
2 + foe + c.

V. x4 + ax2
y* + y*.

VI. a3 + &3 =(a + &)(a
2 -a& + &2

),

a3 -b*=(a- b)(a
2 + ab + b*).

VII. an -bn
,

an + 6n .

VIII. aa? + a?/ -h as = a(» + y + «).

Of these types, IV is more readily factored by means of

VIII as follows:

Ex. Factor 6 x2 - 7 x - 20.

Multiply — 20 by 6 (the coefficient of x2
). Factor — 120 so that the

sum of the factors is — 7 (the coefficient of x). These factors are —15, 8.

Then write a 9 0ft . , 1K , Q **%6 x2 — i x — 20 = 6 x2 — 15 x + 8 x — 20.

Group by Type VIII, s= 3 jc(2 X
-

5) + 4(2x - 5),

whence, 6 x2 - 7 z - 20 = (2 x - 5) (3 x + 4) .

Type VI may be placed under Type VII.

EXERCISE 20
Factor :

i. 3a?-x-10. 5. a**+ 4.

2. 4a2 + 12a + 9. 6. 3s + 8.

3. a3
-?/

3
. 7. a2 + 96 2 -4c2 + 6a&.

4. a3
4- a

2 -2a -2. 8. a^+2^+2/
2

+8(x+^)4-16.
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9. b*wS-4>+1. 18. #+d+aM-«
10. 6a2 -17a + 12. 19. ar

3 + 3#2 + 3;r + 1.

11. 9a4 -13;r2 + 4. ; 20. 9ra2 -36ran.

12. .^ + 7^-8. • 21. a»-a* + a*-l

13. (a.-6)
2

-2(a-o)-35. 22. Ga26 -4a2 + 15afc - 10a.

14. m2 + (a
—

Z>)
m — a&. 23. a" 2 — 32.

15. m*-l. 24. 9 or 4 + 12 or 2+ 4.

16. (2a-36)
2

-(a-&)
2
. 25. 9a2 - 30 ab + 25//- 4 c

2
.

17. p^-f^r1
4- 12. 26. 9a2 -25c2 + 62 + 6aZ>.

27. 36 a4 -61 a2+ 25.

28. (3a-&)
2

-6a(3a-&) + 27a-96.

29. 2 a"6 + 250. 32. a6 + i/\

30. (7x + 2) + 3V7x + 2 + 2. 33. 16^ + 14^-15.

31. m(2a?-3)-4m
2
a?

2 + 9m2
. 34. 25(?m + 3)

2

+10(m + 3) + l.

35. 8(2a-56)-
1

-12(2a-56)"M-4.

36. 143 A:
2 -103 A: + 14.

37 . Var + 4a-6 + 2a2 -l + 4(2#-3).

38. g* + g
2
t
2 + t\ 42. *P+$.

39. x* + a2x — a3 — az2
. 43. a?

4 — 13 x2 + 4.

40. c-3d-18-9d + 2c~*. 44- 9 ey- 16 e/
3

.

41. r4 -20r2 + 99. 45. 304 v2 + 25 v - 6.

46. (a> + l)' + 2(a> + l)* + l.

47. &(*+ff+H*+fff(*ffl-

ip. a6 -64. 50- 25a 4 + a2,+ l.

49. 6 or 4 — 41 x~hfr
— 7 y. 51. 4+ a3 — a2 — 4 a.

52. m4 — 1 + ra — m3
.

53. 3(^ + l)+5(x-
2

-l) + (.r + l)
2

.

54. ear^+ lSar1
-^. 57- ;>

2

-0-

55. a*+fti 58. 4a?*+4 -4a*+2 + l.

56. **-#V. 59- a2x-9^ + 2a--18.
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60. 4/>V + 20pr/-lG/A/-80 /̂ .

61. (x
2 - 2 x + 1)

-
(a + 1)

2
. 65. a5 - 27 a2 + 243 -9 a3

.

62. 52m — 10m2 — 10. 66. 22m -\- A x • 2m — 21 x2
.

63. s*»-j* 67. a+2Va&+ &.

64. a8 -256. 68. (2 a - 3&)
2 -

(3 a- 2 &)
2

.

69. a2 + 2a&-f-c
2 -2&c-2ac+62

.

70. 27m3 -54m2 -f-36m-8. 72. 9 a2 - 6a -4 62 - 45.

71. ar
5 + a?

4 + oj
8
4- #

2 4^ + l. 73. 1 + 2ab - a4 - a2b2 - 64
.

74. am2 — ms 4 2 am 71 4- an2
4- 2m2n — mn2

.

75- 2/

2 + rz-2?/-z4-l.

FACTOR THEOREM

104. The Remainder Theorem.

Let it be required to divide px
2
4- qx 4- r by a; — a.

pas
2 + #x + r I x — a

px* - apx \px + (ap + g)

(ap + g)a

(ap 4 q)x — pa
2 — ga

pa'
1 + qa + r, Remainder.

We observe that the final remainder,

pa
2 + qa-\-r,

is the same as the dividend with a substituted in place of x
;

this exemplifies the following law :

If any polynomial, involving x t
be divided by x -

a, the
remainder of the division equals the result obtained by
substituting a for x in the given polynomial.

This is called The Remainder Theorem.

To prove the theorem, let

px
n
4- qx

n~ l
4- ••• +r#4s

be any polynomial involving x.

Let the division of the polynomial by # — a be (ferried on

until a remainder is obtained which does not contain x.

Let Q denote the quotient, and E the remainder.
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Since the dividend equals the product of the quotient and

divisor, plus the remainder, we have

Q(x— a)+ B'=:pa?+ qx?-
l

4-
... + rx + s.

Putting x equal to a, into the above equation, we have,

11 =2Mn + qa
n~ l

-j-
... +ra + s.

105. The Factor Theorem.

If any polynomial, involving x, becomes zero when as

is put equal to a, the polynomial has a? — a as a factor.

For, by § 104, if the polynomial is divided by x — a, the

remainder is zero.

106. Examples.

i. Find whether x — 2 is a factor of ar
3 — 5 ic

2
-f 8.

Substituting 2 for sc, the expression xs — 5 x2 + 8 becomes

23 _ 5 . 22 + 8, or - 4.

Then, by § 104, if r3 — 5 x2 + 8 be divided by x — 2, the remainder is

— 4
;
and sc — 2 is not a factor.

2. Find whether m + wisa factor of

m4 — 4 m*ra -f- 3 m2a 2 + 5 mn3 — 2 ?*
4
. (1)

Putting m = — n, the expression becomes

7i
4
4- 4 n4

-1- 2 ra
4 — 5 n* — 2 n4

,
or 0.

Then, by § 104, if the expression (1) be divided by ra 4- ?i, the re-

mainder is
;
and m + n is a factor.

•

3. Prove that a is a factor of

(94-$,+ c)(afr + &c + ca)
-

(a + &)(& + c)(« + «)•

Putting a ±= 0, the expression becomes

(b 4- c)frc
-

$(ft 4- c)c, or 0.

Then, by § 104, a — 0, 01 a, is a factor of the expression.
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4. Factor x*-3x2 - Ux- 8.

The positive and negative integral factors of 8 are 1, 2, 4, 8,
—

1,
— 2,

-
4, and - 8.

It is best to try the numbers in their order of absolute magnitude.
If x = 1, the expression becomes 1—3—14 — 8.

If x = — 1, the expression becomes — 1 — 3 + 14—8.
If x = 2, the expression becomes 8—12 — 28 — 8.

If x =— 2, the expression becomes —8—12+28 —
8, or 0.

This shows that x + 2 is a factor.

Dividing the expression by x + 2, the quotient is x2 — 5 x — 4.

Then, x3 - 3 x2 - 14 a - 8 = (x + 2)02 - 5 x - 4).

EXERCISE 21

Factor the following :

1. as + 8. 9. an -6n
.

2. m5
-f-?r\ 10. 2ar3 -f5a;

2 — # — 6.

3. a;
6 - 729. 11. a4 -ar* + 2a;2 -4.

4. ar
3 + 5a;2 -8a;+ 2. - 12. 5a3 -18a-4.

5. m3 - 11 ?7i — 10. •

13. ar
3 + a,-

2
+-7 a; + 18.

6. a4 — a3 + 3 a — 14. 14. m3 — 5 m 2 — 36.

7 . c3_2c2 -9. 15. A;
4 -5A;2+ 3A;-2.

8. a;
4 -625.

Find without actual division :

16. Whether p — 1 is a factor of p
3
-+ 3p

2 — 4.

17. Whether a; -f- 2 is a factor of xA
-f 3 x

3 — 4 a,\

18. Whether a? + 1 is a factor of 2 a?+ 6 x2 - 3 a? + 4.

19. Whether m — 3 is a factor of m3 — 4 m — 15.

20. Whether a — 5 is a factor of a3 — 3 a 2 — 5 a — 25.

21. Whether c - 2 is a factor of 3 c
3 — 9 c

2 + 5 c + 2.

22. Whether a is a factor of a(b — c) -f b (c
—

a) + c(a
—

b).

23. Whether c is a factor of a (b
—

c)+ b (c
—

a) + c(a
—

b).

24. Whether x +- 1/ is a factor of a? (2 a? -f- 3 ?/)
— y (3 a? +- 2 // ).

25. Whether b is a factor of a2

(b
-

c)
2 + 62

(c
-

a)
2 + c

2

(a
-

b)
2

.
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HORNER'S SYNTHETIC DIVISION

107. The method of synthetic division, or as it is sometimes

known, the method of detached coefficients, greatly abridges
the work of division, especially where binomial divisors are

concerned.

108. Divide ar
3 - 11 x2 + 36 x - 36 by x - 3.

Writing dividend and divisor with coefficients only,

1-3
1-8 + 12 Quotient.

1-11 + 36-
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EXERCISE 22

Divide the following by synthetic division:

i . 2 x^ — 7 x2
+- x + 10 by x — 2.

2. 3 a4 — a3 — 5 a2 + 6 a + 7 by a -h 1.

3. a4 -lla3+ 29a2

-9a+-14by a-7.

4. 4 m3 — 17 m2
?i -f- 13 mn2

-f- ft* by m — 3 fl.

5. 3a5 + lla4 _43^-4a;2
-f lla-6 by »+ 6.

6. 8^4 -35?;3 + 7v2 + 22v-8by v-4.

109. Divide ar
3 — 11 a;

2 + 36 x — 36 by x — 5, and by a — 7.

1 - 11 + 36 - 36 |6 1 - 11 + 36 - 36
[7_

4. 5-30 4-30 -f 7-28 + 56

— 6+6—6 Remainder — 4 + 8 + 20 Remainder

(Quotient)
>

(Quotient)

A factor lies between x — 5 and x—7. It is found to be x — 6.

Then if in dividing by a binomial a remainder occurs, and if

the remainders arising from successive division by two binomi-

als are of opposite sign, a factor #— a lies between these two

binomials.

EXERCISE 23

i. Locate the root between 2 and 4 of x3 — 17 x -f 24 = 0.

Locate roots of the following :

2. a3 + 10a2 + 17a-2S = 0.

3. a4 + 3tt3 -10a2 + 3a + ir> = 0.

4. x5 — 8xi -7xi + Mx2 -5x + 4i) = 0.

5. 3ar3 -26#2 + 60<»-72 = 0.

6. mA - 2 m3 - 19 m2 + 12 m + 40 = 0.
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SOLUTIONS

110. If the product of abc ••• to n factors = 0, at least one

of the factors must be zero.

Ex. 1. Let (x -2)(x- 3)(x + 4) = 0.

Then x — 2, x — 3, or x + 4 must equal zero.

The equation is satisfied by the root obtained by putting any one of

the factors equal to 0. Hence, x = 2, 3, or — 4 are the solutions of the

equation.

Ex. 2. Solve 52*- 5* -12 = 0. .

(1)

(5*-4)(5* + 3)=0. (2)

Whence, 5* - 4 = 0, 5* = 4, (3)

and 5* + 3 = 0, 5» =- 3. (4)

To solve (3) and (4), take the logarithms of each member of the

equations :

From (3) zlog5 = log 4 (§ 89) , (5)

and ^log4 = 1
0020 = 602

#

log5 .6990 699
v J

From (4) x log 5 = — log 3.

Ex. 3. Solve the equation .2* = 3.

Taking the logarithms of both members, xlog.2
—

log 3.

Then x = ^^= A1U = -^2L = _ .6285+.
log. 2 9.3010-10 -.699

An equation of the form ax = b may be solved by inspection

if b can be expressed as an exact power of a.

Ex. 4. Solve the equation 16x = 128.

We may write the equation (2
4
)* = 27

,
or 24* = 27

.

Then, by inspection, 4 x = 7
;
and x = J.

(If the equation were 16x =— ,
we could write it (2

4
)* = — = 2"7

;v 4
128 27

then 4x would equal — 7, and a; =— {.)
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EXERCISE 24

Solve the following equations :

i. 13* = 8. 4 . .005038* = 816.3. 7. .2*+5 = .5*

2. .06* = .9. 5. 34*- 1 = 42*+3
. 8. 16* = 32.

3. 9.347* = .0625. 6. 7 3*+ 2 = .8*. 9. 32* = ^ .

10. (TV)^ = 8. 11. ay = Jj. 12. .042*- 5 (.04)* -24 = 0.

13. 23* + 7.22*- 9.2* -63 = 0.

14. 3°"-5.32'- 8.3* + 12 = 0.

15. II 4* -5- II 2* + 4 = 0.

16. 23*+3 -6.22*+ 2 + ll • 2*+1 -6 = 0.

17. .5
4* -

2(.5)
3* - 16 (.5)

2* + 2 (.5)* + 15 = 0.

18. 23* - 10- 22*- 71 -2* -60 = 0.

19. a?-x2 -9x + 9 = Q.

20. ar + (5c + 2c7)£ + 10ccZ = 0.

COMMON FACTORS AND MULTIPLES

111. A Common Factor of two or more expressions is a factor

of each of them.

112. The Highest Common Factor (H. C. F.) of two or more

expressions is their common factor of highest degree (§ 23).

113. A Common Multiple of two or more expressions is an

expression which is exactly divisible by each of them.

114. The Lowest Common Multiple (L. C. M.) of two or more

expressions is their common multiple of lowest degree.

Ex. 1. Find the H. C. F. of a 2 + 2 a - 3 and 1 - a3
.

a'2 +2a-3= (a-l)(a 4-3).

1-0,3 = (1_«)(1 + rt + a2).

The factors of the first expression can be put in the form

-
(1
- a)(8 + a).

Hence, the H. C. F. is 1 - a.



FACTORS 67

Ex. 2. Eequired the L. C. M. of

x2 — 5x + 6, x2 — 4x + 4, and Xs — 9 x.

•

*2 -5x+6 = (£-3)(z-2).
x2 -4x+4=: 0-2) 2

.

x* - 9 x = x(x + S)(x - 3).

It is evident by inspection that the L. C. M. of these expressions is

z(z-2) 2
(£ + 3)(jc-3).

115. "When the polynomials cannot be readily factored by

inspection, the H. C. F. and L. C. M. may be found by the fol-

lowing method.

The rule in Arithmetic for the H. C. F. of two numbers is :

Divide the greater number by the less.

If there be a remainder, divide the divisor by it; and
continue thus to make the remainder the divisor, and
the preceding divisor the dividend, until there is no
remainder.
The last divisor is the H. C. F. required.

Thus, let it be required to find the H. C. F. of 169 and 546.

169)546(3
507

39)169(4
156

13)39(3*
39

Then 13 is the H. C. F. required.

116. We will now prove that a rule similar to that of § 115

holds for the H. C. F. of two algebraic expressions.

Let A and B be two polynomials, arranged according to the

descending powers of some common letter.

Let the exponent of this letter in the first term of A be

equal to, or greater than, its exponent in the first term of B.

Suppose that B is contained in A p times, with a remainder

C; that C is contained in B q times, with a remainder D; and

that D is contained in C r times, with no remainder.
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To prove that D is the H. C. F. of A and B.

The operation of division is shown as follows :

B)A(p
pB
C)B(q

qC_
D)C(r
rD

We will first prove that D is a common factor of A and B.

Since the minuend is equal to the subtrahend plus the remainder

(F - C"§ 4°)' A^pB+C, (1)

B = qC+D, (2)

and C = rD.

Substituting the value of C in (2), we obtain

B = qrD + D= D(qr + 1). (8)

Substituting the values of B and C in (1), we have,

A =pD(qr + 1) +rD = D(pqr +p + r). (4)

From (3) and (4), D is a common factor of A and B.

We will next prove that every common factor of A and B
is a factor of D.

Let F be any common factor of A and B
;
and let

A = mJP7

,
and B = nF.

From the operation of division, we have

C = A-pB, (5)

and D = B-qC. (6)

Substituting the values of ^4 and 7? in (5), we have

C = mF — pnF.

Substituting the values of B and C in (6) we have

D = nF— q(mF — pnF)= F(n —qm +pqn ).

Whence, F is a factor of D.
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Then, since every common factor of A and B is a factor of

]), and since D itself is a common factor of .1 and />, it follows

that D is the highest common factor of A and B.

We then have the following rule for the H. C. F. of two

polynomials, A and B, arranged according to the descending

powers of some common letter, the exponent of that letter in

the first term of A being equal to, or greater than, its exponent
in the first term of B:

Divide A by B.
If there be a remainder, divide the divisor by it;

and continue thus to make the remainder the divisor,
and the preceding divisor the dividend, until there is

no remainder.
The last divisor is the H. C. P. required.

It is important to keep the work throughout in descending powers of

some common letter
;
and each division should be continued until the

exponent of this letter in the first term of the remainder is less than its

exponent in the first term of the divisor.

Note 1 : If the terms of one of the expressions have a common factor

which is not a common factor of the terms of the other, it may be re-

moved
;
for it can evidently form no part of the highest common factor.

In like manner, we may divide any remainder by a factor which is not

a factor of the preceding divisor.

117. i. Find the H. C. F. of

Gx2 - 25x + 14 and Ox*- 7 x2 - 25 x + 18.

6x2 -25x + 14)Gx*- 7a---25x+ 18(x + 3

6s* -25x2 + Ux
18x2 -39x
18s2 -75s + 42

36x-24

In accordance with Note 1, we divide this remainder by 12, giving

x ~~ 2 '

3x-2)()x2 -25x + 14(2x-7
n.i-2 - 4x

-21* -
#

-'21 as + 14

Then, Sx — 2 is the H. C. F. required.
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Note 2 : If the first term of the dividend, or of any remainder, is not

divisible by the first term of the divisor, it may be made so by multiply-

ing the dividend or remainder by any term which is not a factor of the

divisor.

2. Find the H. C. F. of

3 «8 + a2b _ 2 atf an(i 4 asb + 2 a2b2 - abs + ft
4

.

We remove the factor a from the first expression and the factor b from

the second (Note 1), and find the H. C. F. of

3 a2 + ab - 2 V2 and 4 a3 + 2 a2
ft
- aft2 + ft

3
.

Since 4 a3 is not divisible by 3 a2 ,
we multiply the second expression

by 3 (Note 2).
4 a3 + 2 a2

ft
- aft2 + ft

3

3^

3 a2 + a& _ 2 ft
2
)l2 a3

-f 6 a2
ft - 3 ab2 + 3 ft

3
(4 a

12q8 + 4a2ft-8aft2

2 a2
ft + 5 aft2 + 3 ft

3

Since 2a2
ft is not divisible by 3 a2

,
we multiply this remainder by

8 (Note 2).
2 a2b + 5 ab2 + 3 ft

3

3

3 a2 + aft - 2 ft
2
)6 a

2
ft + 15 aft2 + 9ft3 (2ft

6a2&+ 2 aft
2 - 4 ft

3

13 aft2 + 13 ft
3

We divide this remainder by 13 b2 (Note 1), giving a + b.

a + 6)3 a2 + aft - 2 ft
2
(3 a - 2 6

3 a2 + 3 aft

-2 aft

- 2 aft - 2 ft
2

Then, a + ft is the H. C. F. required.

Note 8 : If the first term of any remainder is negative, the sign 0!

each term of the remainder may be changed.

Note 4: If the given expressions have a common factor which can

be se£n by inspection, remove it, and find the H.C. P, of the resulting

expressions; the result, multiplied by the common factor, will be the

H. C. F. of the given expressions.
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3. Find the H. C. F. of

2aJ4 + 333 -6a2 + 2ajand ffV^-W— 2flf— ft

Removing the common factor x (Note 4), we find the H. C. F. of

2x3 + 8 as* - 8a; -f 2 and Gx3 + 5x2 - 2x - 1.
"

2x3 + 3x2 -()x + 2)6a* + 5*»- 2x-l(3
6x3 + 0x2 - 18a; + 6

-4x2 + 16x- 7

The first term of this remainder being negative, we change the sign of

each of its terms (Note 3).

2x3 + 3x2 - 6x+ 2

2

4x2 - 16x + 7)4x3 -f- 6x2 - 12x + 4(x
4x3 -16x2 + 7x

22x2 - 19x + 4

2

44 x2 - 38x+ 8(11
44x2 - 176x + 77

69)138x-69
2x- 1

2x-l)4x2 - 16x + 7(2x-7
4 x2 — 2 x

- 14x
- 14x4- 7

The last divisor is 2x— 1
; multiplying this by x, the H. C. F. of the

given expressions is x (2 x — 1).

(In the above solution, we multiply 2 x3
-f 3x2 — 6x -b 2 by 2 in order

to make its first term divisible by4x2
;
and we multiply the remainder

22 x2 — 19 x -h 4 by 2 to make its first term divisible by 4 x2
.)

118. We will now show how to find the L. C. M. ot two ex-

pressions which cannot be readily factored by inspection.

Let A and B be any two expressions.

Let F be their H. C. F., and M their L. C. M.

Suppose that A = aF, and B = bF.

Then, AxB = abF2
. (1>

Since .Pis the H. C. F. of A and #, a and b have no common factors ;

whence the L. C. M. of rti^and bF is abF.

That is, M=abF.
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Multiplying each of these equals by F, we have

Fx M=ahF~. (2)

- From (1) and (2), A x B = F x M.

That is, the product of two expressions is equal to the product

of their H. C. F. and L C.;M.

Therefore, to find the L. C. M. of two expressions,

Divide their product by their highest common factor ; or,

Divide one of the expressions, by their highest common factor,

and multiply the quotient by the other expression.

Ex. Find the L. C. M. of

6x2 -17x2 + 12 and 12a2 -4a-21.
6x2 - 17 x + 12)12 x2 - 4x-21(2

12 x2 -34 x + 24

15)30x- 45

2x- 3)6x
2 -17x + 12(3«-4

6x2 -9x
-Sx
-8x + 12

Then, the H.C.F. of the expressions is 2x — 3.

Dividing Ox*2 — 17 x + 12 by 2 x — 3, the quotient is 3 x — 4.

Then, the L. C. M. is (3x- 4)(12x
2 - 4x- 21).

EXERCISE 25

Find the H. C. F. and L. C. M. of the following:

i. 2a2 + a-6, 4 a2 -8a +-3.

2. 6a;2 -17a,' + 10, 9a?
2 -14^-8.

3 . x2

-Cyx-27, x>-2x2 -8x + 2l.

4. 6^2

-31^/ + 182/
2
,

9 x2 + 15^- 14 y\

5. 8a2 + 6a-9, 6a3 + 7a 2 -7a-6.

6. 4a2 -lla-3, 8xA+ 6x*-llx2 -23x-5.

7. m5-4m3 + ^2
-4, m4— 2m3 — m* + m + 2.

8. 12p
2 -19pg-21?2

,
Y2

l
r + r,

lr<i-npq2
-(S(f.

9 . c
4 + 7c3 +12c2

,
c
3 + 4c2

-9c-36, S^+lOcr-lSc-L'S.
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10. 8 ar
3 + 27, 4 a3 - 8x2 - 9x + IS, 2 .r + ar°- 11 a- 12.

ii. 81- it-
4

,
ic

4 -4ir3 + 4x2 -4x + 3.

12. a4 + 4, aar + 2a.c + 2a, ar
3 + 3a;2 + 4# + 2.

13. 16c4 + 8c2 + 81, 4c3 + 4c2+ c-9.

14. a3 + 7a2 -9a-63, a3 + f>a2
-{- 11a + 6.

15. (5a-3bf-(a + b)\ 72a2 - 48 a& + 8&2
.

16. a3 + 6a2a + 12aa;2 + 8ar3
,
4 a* + 8 a4x - aV- 2 aV.

V. FRACTIONS

119. A Fraction is an indicated quotient written usually in

the form —
,
where a is the dividend, and is called the numera-

tor, and b the divisor, and called the denominator.

120. If the same factor be introduced into, or removed from,
both dividend and divisor, the quotient is not changed. Upon
this principle depends the reduction of fractions to either

higher or lower terms. The laws of sign for fractions are

those of ordinary division. The sign before the fraction de-

notes whether the quotient is to be added or subtracted.

REDUCTION OF FRACTIONS

121. Change of sign,

-+-«_ _
— cl _ _ + a _ y — a

EXERCISE 26

Write each of the following in three other ways without

changing its value :

a

2'
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122. Reduction to Lowest Terms. This is accomplished by

removing every factor common to both numerator and denomi-

nator. If numerator and denominator are not prime to each

other, it is possible generally to factor them by inspection.

When, however, the factors cannot be readily seen, the method

of § 117, known as the Euclidean method, may be used.

EXERCISE 27

Reduce the following to lowest terms :

27 a8 + 8
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13-

14.

15-
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(a
—

b)(a
—

c) (c
—

a)(b
—

e) (c — b)(b
—

a)

4 5a2 -7a -6 8a2 -16a + 6

a _l 6a2 -a-12 2a2 -5a + 2

4

3a-
x — y

-j _2x — 3y
3x — 4:y

m — 2 _ 4 — ?n 1 — m
m -f 5 3 — m m — 5

16. 3a+5-

i7-

a + 2

-K

5 a

a2 -10a-24 + 1

Sx + 2y 3x-2y Ntf + Sf
1_1

27arJ -8
2/
3

J

18.

19.

4c4 -29c2 +25 _ /4c2 -20c + 25 6c2 + llc-l(P
c
6 -l ; V 3c2 + 3c + 3 9c2-4 ,

g s
9fa

2 + 5a?-f 6)

^+ 3^4-3 a? 4-1

M
x y

4x
2 + >

21.

1 _i_
4 «ff + f ^ ^ + K

8

4 a;
2

x + 4: x — 1 a; + 2 a?
2 — a;- 16

# + 2 # — 3 #—5 a:
2 — 8 x + 1 5

1
a^4-2a;-ll\ 9

af'+5a;-14y
*

^+ 343*



76 ALGEBRA

2 &2 + 3a> + 2 4
,

x2+ l

24 .

SB + 1 a?" — 1 #2
-|- 5 x + 6 # 12 a;

(2x
2 -2xy-2x)(x

2 -y2

) ^

X

x + y

cf + V a4_ &4 3a2

a* + &2 a2
b + ab2 a4 - a?b + d2b2 -ab3+b*

123. Under certain conditions a fraction may assume a form

the value of which is not readily seen. Such forms usually

occur in limiting values of fractions in which the unknown or

unknowns are considered variable.

124. A variable number, or simply a variable, is a number

which may assume, under the conditions imposed upon it, an

indefinitely great number of different values.

A constant is a number which remains unchanged throughout
the same discussion.

125. A limit of a variable is a constant number, the differ-

ence between which and the variable may be made less than

any assigned number, however small.

Suppose, for example, that a point moves from A towards B under the

condition that it shall move, during successive equal intervals of time,

first from A to O, halfway be-

tween i andi?; then to Z>, half- f L ?
*

f

way between C and B
;

then to

E, halfway between D and B
;
and so on indefinitely.

In this case, the distance between the moving point and B can be made
less than any assigned number, however small.

Hence, the distance from A to the moving point is a variable which

approaches the constant value A B as a limit.

Again, the distance from the moving point to B is a variable which

approaches the limit 0.

126. Interpretation of j
•

Consider the series of fractions -,
—

,
—

'-,
——

,
•••.

3' .3' .03
'

.003'
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Here each denominator after the iiist is one-tenth of the

preceding denominator.

It is evident that, by sufficiently continuing the series, the

denominator may be made less than any assigned number,
however small, and the value of the fraction greater than any
assigned number, however great.

In other words,

If the numerator of a fraction remains constant, while
the denominator approaches the limit 0, the value of
the fraction increases without limit.

It is customary to express this principle as follows :

a

The symbol go is called Infinity ; it simply stands for that which is

greater than any number, however great, and has no fixed value.

127. Interpretation of — •

00

Consider the series of fractions -, — ,
——

3
?

30' 300' 3000'
*

Here each denominator after the first is ten times the pre-

ceding denominator.

It is evident that, by sufficiently continuing the series, the

denominator may be made greater than any assigned number,
however great, and the value of the fraction less than any

assigned number, however small.

In other words,

If the numerator of a fraction remains constant, while
the denominator increases without limit, the value of

the fraction approaches the limit 0.

It is customary to express this principle as follows T

«=0.
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128. No literal meaning can be attached to such results as

a a A- = oo , or — = ;

for there can be no such thing as division unless the divisor is

a finite number.

If such forms occur in mathematical investigations, they
must be interpreted as indicated in §§ 126 and 127. (Coin-

pare § 86.)

THE PROBLEM OF THE COURIERS

129. The following discussion will further illustrate the

form -, besides furnishing an interpretation of the form -•

The Problem of the Couriers.

Two couriers, A and B, are travelling along the same road in

the same direction, RB', at the rates of m and n miles an hour,

respectively. If at any time, say 12 o'clock, A is at P, and B
is a miles beyond him at Q, after how many hours, and how

many miles beyond P, are they together ?

B P Q Rl
I I I l

Let A and R meet x hours after 12 o'clock, and y miles beyond P.

They will then meet y — a miles beyond Q.

Since A travels mx miles, and B nx miles, in x hours, we have

f y — m#,

iy — a = nx.

Solving these equations, we obtain

We will now discuss these results under different hypotheses.

1. m>n.
In this case, the values of x and y are positive.

This means that the couriers meet at some time after 12, at some point

to the right of P.
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This agrees with the hypothesis made
;
for if m is greater than n. A is

travelling faster than B
;
and he must overtake him at some point beyond

their positions at 12 o'clock.
2. m<n.

In this case, the values of x and y are negative.

This means that the couriers met at some time before 12, at some point
to the left of P.

This agrees with the hypothesis made; for if m is less than n, A is

travelling more slowly than B
;
and they must have been together before

12 o'clock, and before they could have advanced as far as P.

3. a = 0, and m > n or m < n.

In this case, x — and y = 0.

This means that the travellers are together at 12 o'clock, at the point P.

This agrees with the hypothesis made
;
for if a = 0, and m and n are

unequal, the couriers are together at 12 o'clock, and are travelling at

unequal rates
;
and they could not have been together before 12, and will

not be together afterwards.

4. m = n, and a not equal to 0.

In this case, the values of x and y take the forms - and —. re-

*• i

spectively.

If m — n approaches the limit 0, the values of x and y increase without

limit (§ 126) ; hence, if m = n, no fixed values can be assigned to x and y,

and the problem is impossible.

In this case, the result in the form - indicates that the given problem is

impossible.

This agrees with the hypothesis made
;
for if m = n, and a is not zero,

the couriers are a miles apart at 12 o'clock, and are travelling at the same

rate
;
and they never could have been, and never will be together.

5. m =
rc, and a = 0.

In this case, the values of x and y take the form -•

If a = 0, and m = n, the couriers are together at 12 o'clock, and travel-

ling at the same rate.

Hence, they always have been, and always will be, together.

In this case, the number of solutions is indefinitely great ;
for any

value of x whatever, together with the corresponding value of y, will

satisfy the given conditions.

In this case, the result in the form - indicates that the number of solu-

tions is indefinitely great.

Such form is called Indeterminate.
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130. In § 129, we found that the form - indicated an ex-

pression which* could have any value ivhatever; but this is not

always the case.

Consider, for example, the fraction
x ~~ a

•

x2 — ax

If x — a, the fraction takes the form -•

Now,
x2 -a? _ (x + a)(x-a) __ x+a .

x2 — ax ic(x
—

a) x

which last expression is equal to the given fraction provided x does not

equal a.

The fraction
x + a

approaches the limit
a "*" a

,
or 2, when x approaches

the limit a.
x a

This limit we call the value of the given fraction ivhen x = a.

Then, the value of the given fraction when x = a is 2.

In any similar case, we cancel the factor which equals for the given
value of

ac,
and find the limit approached by the result when x approaches

the given value as a limit.

EXERCISE 28

Find the values of the following :

2 ax — 4 a2
i o x2 — 16 , A

2 or
3 -5 a;

2
. A 4a;2 -4a; -3 ,

2. when a? =0. 4.
— when.r=i|.

4:X2 + 3x • 6af'-17a; + 12

s. —— 2— when x = — 2.D
a**-8a!*-f-16

6. — -~J—- when x = 2.
ar* - 7 a; -f G

131. Other Indeterminate Forms.

Expressions taking the forms
||-,

x 00
,

or qo — 00, for oer-

tain values of the letters involved, are also iiulct erniiiiate.
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i. Find the value of (ar
3 + 8) (l + -i—\ when x = - 2.

This expression takes the form x oo, when x =— 2 (§ 126).

Now, (x
3 + 8) ( 1 + -i-^ = x3 + 8 + ^-ii?

V £ + 2/ x + 2

,
= ic

3 + 8 + x2 -2x + 4 = x3 +x2 — 2x+12.

The latter expression approaches the limit — 8+4 + 4 + 12, or 12,

when x approaches the limit — 2.

This limit we call the value of the expression when x =— 2
; then, the

value of the expression when x =— 2, is 12.

In any similar case, we simplify as much as possible before finding the

limit.

1 2x
2. Find the value of -- when x = 1.

1 — x 1 — x2

The expression takes the form oo — oo, when x = 1 (§ 126).

Now 1 2x
:= l+ x -2x = 1-s = 1

r

1 - x 1-x2 1-x2 1 - x2 1 + x

The latter expression approaches the limit J when x approaches the

limit 1.

Then, the value of the expression when x = 1, is \.

132. Another example in which the result is indeterminate

is the following :

1 4- 2x
Ex. Find the limit approached by the fraction ^— when

x is indefinitely increased.

Both numerator and denominator increase indefinitely in absolute value

when x is indefinitely increased.

1 + 2
1 + 2x x

Dividing each term of the fraction by x, = =— = =
A — OX L

O
X

The latter expression approaches the limit
r (§ 127), or — -, when

x is indefinitely increased.

In any similar case, we divide both numerator and denominator of the

fraction by the highest power of x.
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EXERCISE 29

Find the limits approached by the following when x is in-

definitely increased :

'

4 + 5a?-3s8

_ liii. a^-2a?-4

Find the values of the following :

1 12 * o

5. (2a;
2 -5#-3)f2 + -i-Vvhena = 3.

V X — 3J

RATIO AND PROPORTION

RAtlO

133. The Ratio of one number a to another number b is the

quotient of a divided by b.

Thus, the ratio of a to b is -; it is also expressed a : b.
b

The ratios here spoken of are but fractions under another

name, and have all the properties offractions.
In the ratio a: b, a is called the first term, or antecedent, and

b the second term, or consequent.

If a and b are positive numbers, and a > b,
- is called a
b

ratio of greater inequality ; if a < 5, it is called a ra/10 of less

inequality.

134. A ratio of greater inequality is decreased, and
one of less inequality is increased, by adding the same
positive number to each of its terms.

Let a and b be positive numbers, a being > b, and x a positive number.

Since a > &, ax > bx. (§ 50)

Adding ab to both members (§ 50),

ab 4- ax>ab + bx, or a(& -f x)>b(a +x).
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Dividing both members by b(b -f x), we have

j»j±|. _

(|M)

In like manner, if a < 6,
- < 'L±*.
6 6 + x

PROPORTION

135. A Proportion is an equation whose members are equal
ratios.

Thus, if a : b and c : d are equal ratios,

a:b = c :d, or - =e- ,

is a proportion. The latter form is preferable.

136. In the proportion a: b = c : d, a is called the first term,

b the second, c the third, and d the fourth.

The first and third terms of a proportion are called the ante-

cedents, and the second and fourth terms the consequents.

The first and fourth terms are called the extremes, and the

second and third terms the means.

137. If the means of a proportion are equal, either mean is

called the Mean Proportional between the first and last terms,

and the last term is called the Third Proportional to the first

and second terms.

Thus, in the proportion a:b = b : c, b is the mean proportional

between a and c, and c is the third proportional to a and b.

The Fourth Proportional to three numbers is the fourth term

of a proportion whose first three terms are the three numbers

taken in their order.

Thus, in the proportion a:b = c:d, d is the fourth proportional to

a, b, and c.

138. A Continued Proportion is a series of equal ratios, in

which each consequent is the same as the next antecedent; as,

a : b = b \ c = c : d = d : e.
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147. In any proportion, the terms are in proportion by
Composition and Division ; that is, the sum of the first

two terms is to their difference as the sum of the last

two terms is to their difference.

The proof is left to the student. Hint. — Divide the result of § 145 by
that of § 146.

148. In any proportion, if the first two terms be multi-

plied by any number, as also the last two, the resulting
numbers will be in proportion.

Let the proportion be - = -
; then, 2£ = *£.

b d mb nd

(Either m or n may be unity ;
that is, the terms of either ratio may be

multiplied without multiplying the terms of the other.)

149. In any proportion, if the first and third terms be

multiplied by any number, as also the second and fourth

terms, the resulting numbers will be in proportion.

Let the proportion be - = -
; then, — =— •

b d nb nd

(Either m or n may be unity.)

1 50. In any number of proportions, the products of the

corresponding terms are in proportion.

Let the proportions be - — -, and - 3= .*!"

b d f h

Multiplying,
* x ? = ^ X #

r OT 2« = ££.
b f d h bf dh

In like manner, the theorem may be proved for any number of

proportions.

151. In any proportion, like powers or like roots of the
terms are in proportion.

Let the proportion be - = -
; then, — = — •

b d bn d»

nt n,~
In like manner, = •

Vb Vd
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152. In a series of equal ratios, any antecedent is to its

consequent as the sum of all the antecedents is to the
sum of all the consequents.

Let
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The theorem of § 147 saves work in the solution of a certain

class of fractional equations.

2. Solve the equation
2 X ±| = ?A^.^ 2z-3 26 + a

Regarding this as a proportion, we have by composition and division,
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•

i 3 . fl^ry^cVtg-A^iaArt; »^^^y^»^^a^a»^-»r<

14. Find two numbers in the ratio of 2:.'{, sucli that the

sum of their squares shall be 208.

15. Find two numbers in the ratio of 3 : 1, such that the dif-

ference of their squares is 200.

16. Two numbers are in the ratio of 5 : 7. If 6 be added to

each, they will be in the ratio of 7 : 9. Find the numbers.

17. Two numbers are in the ratio of 2 : 5. If 4 be added to

each number, the resulting ratio will be twice the ratio had 4

been subtracted from each number. Find the numbers.

18. The difference between two numbers is 6, and the dif-

ference between their squares is 60. What is the ratio of their

sum to their difference ?

19. In similar figures in geometry, homologous sides are pro-

portional. If a pole 30 feet high casts a shadow 42 feet long,

how high must a pole be to cast a shadow 35 feet long ?

20. A ladder 40 feet long leans against the side of a build-

ing, with its foot 12 feet from the building. A second ladder,

40^ feet long, makes the same angle with the building as the

first ladder. How far is the foot of the second ladder from

the building ?

21. In the triangle ABC, MN is

drawn parallel to BC and divides the

other two sides proportionally. If

AM =12, 4M= 2
and 5(7=48, how

' AN 3'

long is AC? (M is the middle point of AB.) What is the

ratio of AN to MN?
22. The areas of any two similar figures are to each other

as the squares of their homologous .parts. If a regularTiexagon

has a side equal to 6 and an area of 54V3, what is the area of

a regular hexagon whose side is 2 ?
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23. The area of a circle is 6^ times that of another circle.

If the radius of the first circle is 5, what is the radius of the

second circle ?

24. If the altitude of a triangle is twice that of a similar

triangle, how do their areas compare ?

25. The volume of a rectangular solid is equal to the product
of its three dimensions, x, y, and z. If xyz — v and x : y : z

=5 a : b : c, filid
to, y, and 2 in terms of a, b, c, and v.

26. Find three numbers in continued proportion whose sum

is 63, the second being 4 times the first.

27. Given the proportion
- = - = -, where d = 81 and - = - .

_. , . , bed bo
Find a, 0, and c.

28. If 2 a — 36:4a-56 = 26— 3 c:46 — 5 c, prove 6 is the

mean proportional to a and c.

29. If3a + 56:4a-76 = 3c + 5d:4c-7d, prove ?==^
6 a

30. Find two numbers in the ratio of a to 6, such that if

3 increased by - they will be in the rat:

ix + 7 8x + ± 12x+l_Jx-l Solvefora;.

each be increased by - they will be in the ratio of e to /.

3 1

15 45 9(5 » + 2)

fl± 6 + q-2ft a (2a^&)g + 3a6
i Solve for ^

a? ^ + a a2 — a2

33. A man borrows a certain sum, paying interest at the

rate of 5%. After repaying $180, his interest rate on the

balance is reduced to 4J%, and his annual interest is now less

by $ 10.80. Find the sum borrowed.

34. The digits of a certain number are three consecutive

numbers, of which the middle digit is the greatest, and the

first digit the least. If the number be divided by the sum of

its digits, the quotient is ^p. Find the number.
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35. A certain number of apples were divided between three

boys. The first received one-half the entire Dumber, with one

apple additional, the second received one-third the remainder,
with one apple additional, and the third received the remain-

der, 7. How many apples were there ?

36. A freight train runs 6 miles an hour less than a pas-

senger train. It runs 80 miles in the same time that the

passenger train runs 112 miles. Find the rate of each train.

37. A and B each fire 40 times at a target ;
A's hits are one-

half as numerous as B's misses, and A's misses exceed by 15

the number of B's hits. How many times does each hit the

target ?

t 38. A freight train travels from A to B at the rate of 12

miles an hour. After it has been gone 31 hours, an express
train leaves A for B, travelling at the rate of 45 miles an hour,

and reaches B 1 hour and 5 minutes ahead of the freight.

Find the distance from A to B, and the time taken by the

express train.

39. A tank has three taps. By the first it can be filled in

3 hours 10 minutes, by the second it can be filled in 4 hours

45 minutes, and by the third it can be emptied in 3 hours

48 minutes. How many hours will it take to fill it if all the

taps are open?

40. A man invested a certain sum at 3|%, and \\ this sum

at 4^% ;
after paying an income tax of 5%, his net annual

income is $ 195.70. How much did he invest in each way ?

VARIATION

1 56. One variable number (§ 124) is said to vary directly as

another when the ratio of any two values of the first equals

the ratio of the corresponding values of the second.

It is usual to omit the word "
directly

•' and simply say that one nnin

ber varies as another.
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Thus, if a workman received a fixed number of dollars per

diem, the number of dollars received in m days -will be to the

number received in n days as til is to n.

Then, the ratio of any two numbers of dollars received

equals the ratio of the corresponding numbers of days worked.

Hence, the number of dollars which the workman receives

varies as the number of days during which he works.

157. The symbol co is read "varies as"
; thus, ace b is read

" a varies as 6."

158. One variable number is said to vary inversely as

another when the first varies directly as the reciprocal of the

second.

Thus, the number of hours in which a railway train will

traverse a fixed route varies inversely as the speed ;
if the

speed be doubled, the train will traverse its route in one-half

the number of hours.

159. One variable number is said to vary as two others

jointly when it varies directly as their product.

Thus, the number of dollars received by a workman in a

certain number of days varies jointly as the number which he

receives in one day, and the number of days during which he

works.

160. One variable number is said to vary directly as a sec-

ond and inversely as a third, when it varies jointly as the

second and the reciprocal of the third.

Thus, the attraction of a body varies directly as the amount

of matter, and inversely as the square of the distance.

161 . Ifxccy, then x equals y multiplied by a constant number.

Let x' and y' denote a fixed pair of corresponding values of x and y,

and x and y any other pair.

By the definition of § 156, - = -
; or, x - -y.

y y' y
r

x'
Denoting the constant ratio — by m, we have

y'

x = my.
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162. It follows from §§ 158, 159, 160, and 161 that :

1. If x varies inversely as y, x = — •

y

2. If x varies jointly as y and z, x= myz.

3. If x varies directly as y and inversely as z, a?=^ •

z

1 63. Ifxccy, and y oc z, then xccz.

By § 161, if x cc y, x = my. (1)

And iiyazz, y
— nz.

Substituting in (1), x — mnz.

Whence, by § 161, x*z.

164. Ifxccy when z is constant, and xccz when y is constant,

then xcc yz when both y and z vary.

Let y' and z' be the values of y and z, respectively, when x has the

value x'.

Let y be changed from y
f to y", z remaining constantly equal to z\

"

and let x be changed in consequence from x' to X.

Then, by §156, ^=T/' W
Now, let z be changed from z' to z", y remaining constantly equal to

y", and let x be changed in consequence from Xto x .

Then, — = — . (2)
x" z" K J

Multiplying (1) by (2),
± =&L> (3)
xn y"z"

Now if both changes are made, that is, y from y' to y" and z from z' to

z", x is changed from x f to x", and yz is changed from y'z' to u"z".

Then by (3), the ratio of any two values of x equals the ratio of the

corresponding values of yz ; and, by § 156, xccyz.

The following is an illustration of the above theorem :

It is known, by Geometry, that the area of a triangle vaties as the

base when the altitude is constant, and as the altitude when the ba.se is

constant; hence, when both base and altitude vary, the area varies as

their product.
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165. Problems.

Problems in variation are readily solved by converting the

variation into an equation by aid of §§ 161 or 162.

i. If x varies inversely as y, and equals 9 when y = S, find

the value of x when y = 18.

If x varies inversely as y, x =— (§ 162).
y

Putting x = 9 and y = 8, 9 = —
,
or m = 72.

8

Then, x =—
; and, if y = 18, x = — = 4.

V 18

Since variation is simply another way of stating a proportion, the prob-

lems in variation may be solved readily by means of proportion.

E.g. In the above problem ^
xcc -,

y

x.= ™.
y

This equation is true for any assigned values of the variables.

Then, xx =-, (1)
2/i

x2 =™- (2)
, 2/2

Dividing (1) by (2)
Q = V*

(3)
x2 2/i

which is in the form of inverse proportion. Substituting the given values

of x and y in (3) ,
we have

q
..

8

x2 8
'

9 . 8
whence x2 = = 4.

18

2. Given that the area of a triangle varies jointly as its

base and altitude, what will be the base of a triangle whose

altitude is 12, equivalent to the sum of two triangles whose

bases are 10 and 6, and altitudes 3 and 9, respectively ?

Let J5, //, and A denote the base, altitude, and area, respectively, of

any triangle, and B' the base of the required triangle.

Since A varies jointly as /> and //, A = mlUI (§ 162).

Therefore, the area of the first triangle is m x 10 x 3, or 30
???,,

and the

area of the second is m x 6 x 9, or 54 m.
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Then, the area of the required triangle is 30 m -f 54 m, or 84 m.

But, the area of the required triangle is also m x B' x 12.

Therefore, 12 mB' = 84 m, or B' = 7.

Or using proportion and letting A\ — area of first triangle, A2 = area of

second, As = area of third.

A3 = Ai + A2

Ai = mB1H1. (l)

A2 = mB2H2 . (2)

As = mB3H3 . (3)

Adding (1) and (2)
Ax + A2 = m^BiHi + B2H2 ). (4)

Dividing (4) by (3)
Ai+A 2 = m^BxHi + B2II2 )
As m(BsH3)

or, 1= BlHl + B*H3
m

(5)

Substituting the given values of B and if in (5) we have

1 = 10 . 3 + 6 9

12 £3

'

whence, B3 = 7.

EXERCISE 31

i. If xvzy, and # = 3 when ?/
= 12, what is the value of x

when y = 2S?

2. If y&x2
,
and 2/

= 4 when x = l, what is the value of y

in terms of x2 ?

3. If
2/ varies inversely as x, and y = 4 when # == — 3, wrhat

is the value of y when x = 2 ?

4. If & varies directly as y and inversely as 2, and x = £
when # = -§

and 3 = f,
what is the value of x when y = £ and

5. If a; varies jointly as y and z and # = — 20 when y = 2

and 3 = 8, what is the value of # when ?/
= — £ and z<== 16 ?

6. If (3 x + 4) oc (2 ?/
—

5) when # = — 1 and y = 4, wThat is

the value of x when ?/
= 19 ?
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7. If x2 varies inversely as y
8
,
when x = 4 and ?/

= 2
f
what

is the value of 2/ when a? = ?/f ?

8. If x equals the sum of two numbers, one of which varies

directly as y and the other inversely as z
2
,
and x = 47 when

y = — 16 and 3 = 2, and a; = 2 when y = — 2 and z = 1, find the

value of x when y = 3 and z = \*

9. The area of a triangle varies jointly as its base and

altitude. If the area of a triangle whose base is 6 and whose

altitude is 9 is 27, what is the base of a triangle whose area is

44 and whose altitude is 11 ?

10. The distance through which a body falls from rest

varies as the square of the time during which it falls. If a

body falls 900 feet in 7.5 seconds, how many feet will it fall

in 16 seconds ?

11. The illumination from a source of light varies inversely

as the square of the distance from the source. How far must

an object 20 feet from the light be moved in order that it may
receive twice as much light ?

12. A circular plate of lead, 17 inches in diameter, is melted

and formed into three circular plates of the same thickness.

If the diameters of two of the plates are 8 and 9 inches

respectively, find the diameter of the other; it being given

that the area of a circle varies as the square of its diameter.

13. A cow tied to a stake by a rope 24 yards long will graze

over the area within her reach in three days. She breaks her

rope and, in repairing it, it is shortened 1^ feet. In how many
days will she graze over the new area ?

14. A pump supplying the water for a building has a 10-ineh

stroke and a cylinder 4 inches in diameter. It is not possible

to increase the number of strokes of the pump, nor to increase

the length of the cylinder. By how much must the diameter

be increased if 50% is added to the capacity of the pump'/

(The volumes of cylinders vary as the product of the base and

altitude.)
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VI. INVOLUTION AND EVOLUTION

166. We have already given (Chapter III) the involution

and evolution of monomials. We will now consider involution

and evolution of polynomials.

167. Square of a polynomial. By actual multiplication

(a + b + c)
2 = a2 + b 2 + c

2 + 2 ab + 2 ac + 2 be.

In like manner

(a + b + c + df
= a2 + &Vf- c

2 + d2 + 2 a& + 2 ac + 2 ad + 2 6c + 2 6cZ + 2 cd,

and so on for the square of any polynomial.
The law observed may be stated as follows :

The square of a polynomial is equal to the sum of
the squares of its terms, together with twice the prod-
uct of each term by each of the following terms.

Ex. Expand (2 x
2 - 3 x - 5)

2
.

The squares of the terms are 4 sc
4

,
9 x2

,
and 25.

Twice the product of the first term by each of the following terms gives

the results — 12 x :3 and - 20 x2 .

Twice the product of the second term by the following term gives the

result 30 x.

Then, (2 x
2 - 3 x - 5)

2 = 4 x4 + 9 x2 + 25 - 12 x* - 20 x2 + 30 x

= 4 x4 - 12 cc
3 - 11 x2 + 30 x + 25.

168. Cube of a binomial. By actual multiplication

(a -f bf = d3 + 3 a2
b + 3 a&2 + Jft

That is, the cube of the sum of two numbers is equal to

the cube of the first, plus three times the square of the
first times the second, plus three times the first times
the square of the second, plus the cube of the second.

In like manner, the cube of the difference of two
numbers is equal to the cube of the first, minus three
times the square of the first times the second, plus three
times the first times the square of the second, minus
the cube of the second.

The cube of a trinomial may be found by the above method,

if two of its terms be enclosed in parenthesis, and regarded as

a single term.
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169. Square Root of any Polynomial Perfect Square.

By § 167, (a + b + cf = a2 + 2 ab + V1 + 2 ac + 2 be + c2

= a2 + (2a + &)6 + (2a + 2& + c)e. (1)

Then, if the square of a trinomial be arranged in order of

powers of some letter :

I. The square root of the first term gives the first term of

the root, a.

II. If from (1) we subtract a2
,
we have

(2a + 6)H(2« + 2Hc)c # (2)

The first term of this, when expanded, is 2 ab
;

if this be

divided by twice the first term of the root, 2 a, we have the

next term of the root, b.

III. If from (2) we subtract (2a + b)b, we have

(2a + 2& + c)c. (3)

The first term of this, when expanded, is 2 ac; if this be

divided by twice the first term of the root, 2 a, we have the

last term of the root, c.

IV. If from (3) we subtract (2a + 2& + c)c, there is no

remainder.

Similar considerations hold with respect to the square of a

polynomial of any number of terms.

170. The principles of § 169 may be used to find the square

root of a polynomial perfect square of any number of terms.

Let it be required to find the square root of

4 x4 + 12 x3 - 7 x2 - 24 x + 16.

4 x4 + 12 xs - 7 x2 - 24 x + 16
1
2 x2 + 3 x - 4

a2 = 4 a*

2 a + & = 4 x2 + 3 .x

a a

12 x8 - 7 a2 - 24 X + 16, 1st Rem.

2a+2& + c = 4.r2 + 6x — 4

-4
- 16 x2 - 24 x 4- 16, 2d Rem.
_ 16x*— 24x + 16

2 x2 + 3 x — 4 is called the square root and 2 a the first trial divisor.

2 a + b is the first complete divisor.
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We then have the following rule for extracting the square
root of a polynomial perfect square :

Arrange the expression according to the powers of
some letter.

Extract the square root of the first term, write the
result as the first term of the root, and subtract its

square from the given expression, arranging the re-

mainder in the same order of powers as the given ex-

pression.
Divide the first term of the remainder by twice the

first term of the root, and add the quotient to the part
of the root already found, and also to the trial divisor.

Multiply the complete divisor by the term of the root

last obtained, and subtract the product from the re-

mainder.
If other terms remain, proceed as before, doubling the

part of the root already found for the next trial divisor.

171. Cube Root of any Polynomial Perfect Cube.

By §168, (a +& + c)
3

=[(a + 6)+c]
3

= (a -f bf + 3(a + b)
2
c + 3(« + b)c

2
-f.c

3

= a3 + 3 a2b + 3 ab2 + V+ 3(a + b)
2
c + 3(a + by+ c

3

= a3 + (3 a
2+ 3 ab + b

2

)lj + [3(« + bf+ 3(a + b)c + c^c. (1)

Then, if the cube of a trinomial be arranged in order of

powers of some letter :

I. The cube root of the first term gives the first term of the

cube root, a.

II. If from (1) we subtract a3
,
we have

(3a
2+ 3ab + b

2

)b + [3(a + b)
2 + 3(a + b)c + c

2

]c. (2)

The first term of this, when expanded, is 3a2

6; if this be

divided by three times the square of the first term of the root,

3a2

,
we have the next term of the root, b.

III. If from (2) we subtract (3 a
2 + 3 ab 4- &*)&, we have

I3(a + by + 3(a + b)c + c
2

]c. (3)
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The first term of this, when expanded, is 3a2
c; if this be

divided by three times the square of the first term of the root,

3 <r, we have the last term of the root, c.

IV. If from (3) we subtract [3(a + &)
2 + 3 (a + ^'" + «

2

>,
there is no remainder.

Similar considerations hold with respect to the cube of poly-

nomials of any number of terms.

172. The principles of § 171 may be used to find the cnbe

root of a polynomial perfect cube of any number of terms.

Let it be required to find the cnbe root of

aj6 + 6a5 + 3iB4 -28aj8 -9a?2 + 54aj-27.

x6H-6^+3x4-28x3-9x2+o4x-27
= x6

3 «2+3 ab + b2 = 3 x*+6 x3+4 x2

2x
6x5+ 3x*-28x3-9x2+54x-27
0xr>+ 12x*4-'8x3

S(a+ b)
2 = Sx^+ 12x ii+12x2

3(a+ 6)c+ c'
2 =_ - 9x2-18x+9

8s*+ 12a;*+ 3x2-18x+9

- 9;e4_;30x3-9x2+54x-27

- 9x4-36\x3-9x2+54x-27

The first term of the root is the cube root 5f x6
,
or x2 .

Subtracting the cube" of x2
,
or x6

,
from the given expression, the first

remainder is 6 x5 + 3 x4 — 28 x3 — 9 x2 + 54 x — 27.

Dividing the first term of this by three times the square of the first

term of the root, 3x4
,
we have the next term of the root, 2x (§ 171, II).

Now, 3 ab + b2 equals 3 x x2 x 2 x + (2 x)
2
,
or 6 x3 + 4 x2

.

Adding this to 3x4
, multiplying the result by 2x, and subtracting the

product, 6x5 + 12 x4 + 8x3
,
from the first remainder, gives the second

remainder, - 9x4 - 30 x3 - 9x2
-f 54 x- 27 (§ 171, III).

Dividing the first term of this by three times the square of the first

term of the root, 3x2
,
we have the last term of the root,

— 3.

Now, 8(a + b)
2
equals 3(x

2 + 2 x)
2

,
or 3 x4 + 12x3 + 12 x2

; 3(« + b)c

equals 3(x
2 + 2x)(— 3), or — 9x2 — 18 x ; and tfi = 9.

Adding these results, we have 3x4
-f 12 x3 + 3x2 — 18 x + 9.

Subtracting from the second remainder the product of this by — 8, <n-

— 9 x* — 86 .''"'
— x- -f 54 x — 27, there is no remainder

; then, x2 + 2 % — 8

is the required root (J 171, W).
The expressions :

>

»./'
t and :>> .'"* -f 12 Xs + 12 x2 are called trial divisor*,

and the expressions 3 x4 + x3 -f 4 x2 and 3 x4 + 12 x8 + 3 x2 — 18 x -f 9

complete divisors.
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We then have the following rule for finding the cube root of

a polynomial perfect cube :

Arrange the expression according to the powers of
some letter.

Extract the cube root of the first term, write the result
as the first term of the root, and subtract its cube from
the given expression ; arranging the remainder in the
same order of powers as the given expression.
Divide the first term of the remainder by three times

the square of the first term of the root, and write the
result as the next term of the root.

Add to the trial divisor three times the product of the
term of the root last obtained by the part of the root

previously found, and the square of the term of the root
last obtained.

Multiply the complete divisor by the term of the
root last obtained, and subtract the product from the
remainder.

If other terms remain, proceed as before, taking three
times the square of the part of the root already found for

the next trial divisor.

EXERCISE 32

Find the square roots of the following :

i. 4 a4 + 12 a*b - 7 a2b2 - 24 db* + 16 b\

2. 49m4-5m2 -42m3 + l + 6m.

3. 9a2 -24a&-36«c + 1662 + 48&c + 36c2
.

5. x6 + 5xi + Uxs -6x5 + l-4x-2x2
.

6. 4m4-25mi -12m* + 16-24,y,l.

7 . 64 c
2 -80 c -23 + 9c"2 + 30 c"1

.

8. 4 x + 9 y~
A + 4 xhj~

2 + 24 $#"* - 1 %V1
-

9 . 6 yz~
2 + ±x- 2 + y

2 -4 x-hj
- 12 x~ lz~ 2 + 9 z~\
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10. 4 a3 + 29 a - 4 J + 21 a2 - 20 a * + 4 - 18 a*

Find the cube roots of the following :

ii. 343 %* - 441 x>y 4 189 xy
2 - 27 y\

12. a6 -9 0^4 21 a4 4 9 ar* - 42 a?
2 - 36 ar- 8.

13.. 18 a4 - 13 a3 + 1 + 8 aG 4 9 a2 - 3 a - 12 a5
.

14. 54m5 4 44 ra3 + 1 + 27 mfi 4 63 m4 4 6 m 4 21 m2
.

5
3 3 27

16. 64 ah-6 - 240 a/>"
4
c + 300 ah~2

c
2 - 125 c

3
.

17. 8 .s
3 4 36 s

2 4 18 « - 81 - 27 s" 1 4 81 s~ 2 - 27 s~3
:

1 8. 21 a* - 54 a* + 27 ai + 63 a - 44 a* 4 1 - 6 a*.

19. a?"
3 - 3 x~hf 4 3 ar1

?/
- z

3 - 3 ar 2
z -.y* 4- 6 arty*« - 3#s

+ 3 x-V _ 3 y ^

20. a 4 6 aV1 4 12 ah~2
4- 8 6~3 4 3 aV2 4 12 aVV"2

+ 12 6"2c-2 4 3 aV4
4- 6 Ir^r* 4 c"6

.

Find the fourth roots of the following :

21. 81 a10 - 36 a*
k
x~* 4 6 a5*-

1

* -
$ a*ar5 4 gV *"*•

22. a?
8 - 12 x-

7 4 50a;6 -72 x5 -21 a*
4

4- 72 a8 + 50 a2 4 12 a + 1.

Find the sixth roots of the following :

23. 64 m12 - 192 m10
4- 240 m8 - 160 m« 4- 60 m4 - 1 2 m s 4 1.

24. a3 - 3 a*6* 4 V <** - f a *(t 4
1 j

«?;
6 -A «^¥ + *

l

* &9-

173. Square Root of any Integral Perfect Square.

The square root of an integral perfect square may be found

in the same way as the square root of a polynomial.
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We have the following rule for finding the square root of an

integral perfect square :

Separate the number into periods of two digits each,
beginning with the units' place.
Find the greatest square in the left-hand period, and

write its square root as the first digit of the root ; sub-
tract the square of the first root digit from the left-hand

period, and to the result annex the next period.
Divide this remainder, omitting the last digit, by twice

the part of the root already found, and annex the quo-
tient to the root, and also to the trial divisor.

Multiply tne complete divisor by the root digit last

obtained, and subtract the product from the remainder.
If other periods remain, proceed as before, doubling

the part of the root already found for the next trial

divisor.

Note 1 : It sometimes happens that, on multiplying a complete divisor

by the digit of the root last obtained, the product is greater than the

remainder.

In such a case, the digit of the root last obtained is too great, and one

less must be substituted for it.

Note 2 : If any root digit is 0, annex to the trial divisor, and annex

to the remainder the next period.

Ex. Required the square root of 15376.

1

a2 = 1

2 a + b = 200 + 20

b = 20
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Dividing the remainder by 2 a, or 200, we have the quotient 26+
;
which

suggests that b equals 20.

Adding this to 2 a, or 200, and multiplying the result by b, or 20, we
have 4400

; which, subtracted from 5376, leaves 97(1.

Since this remainder equals (2 a + 2 b + c)c, we can get c approxi-

mately by dividing it by 2 a + 2 &, or 200 + 40.

Dividing 976 by 240, we have the quotient 4+
;
which suggests that

c equals 4.

Adding this to 240, multiplying the result by 4, and subtracting the

product, 976, there is no remainder.

Then 124 is the square root.

Omitting the ciphers for the sake of brevity, and condensing the opera-

tion, we may arrange the work of the example as follows:

1'53'76[124
1

22 53

44

2441976

976

CUBE ROOT OP AN ARITHMETICAL NUMBER

174. The cube root of 1000 is 10
;
of 1000000 is 100, etc.

Hence, the cube root of a number between 1 and 1000 is be-

tween 1 and 10
;
the cube root of a number between 1000 and

1000000 is between 10 and 100
;

etc.

That is, the integral part of the cube root of an integer of

one, two, or three digits contains one digit; of an integer of

four, five, or six digits contains two digits ;
and so on.

Hence, if a point be placed over every third digit of an
integer, beginning at the units' place, the number of

points shows the number of digits in the integral part
of its cube root.

175. Cube Root of any Integral Perfect Cube.

The cube root of an integral perfect cube may be found in

the same way as the cube root of a polynomial.
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Required the cube root of 124871G8.

12487108 1 200 + 30 + 2

q8 = 8000000
1

= a + b + c

3 a2 = 120000

Sab = 18000

b1 = 900

138900

30

4487168

4167000

3(a + b)
2 = 158700

3(a + b)c = 1380

c2 = 4

160084

2

320168

320168

Pointing the number in accordance with the rule of § 174, we find

that there are three digits in the cube root.

Let a represent the hundreds' digit of the root, with two ciphers

annexed
;
b the tens' digit, with one cipher annexed ; and c the units'

digit.

Then, a must be the greatest multiple of 100 whose cube is less than

12487168
;
this we find to be 200.

Subtracting a3
,

or 8000000, from the given number, the result is

4487168.

Dividing this by 3 a2
,
or 120000, we have the quotient 37+

;
which sug-

gests that b equals 30.

Adding to the divisor 120000, 3 ab, or 18000, and 62
,
or 900, we have

138900.

Multiplying this by &, or 30, and subtracting the product 4167000 from

4487168, we have 320168.

Since this remainder equals [3 (a + &)
2 + 3(a + b)c + c2]c (§ 171, III),

we can get c approximately by dividing it by 3(a + ft)
2

,
or 168700.

Dividing 320168 by 158700, the quotient is 2+
;
which suggests that c

equals 2.

Adding to the divisor 158700, 3 (a + 6)c, or 1380, and c2
,
or 4, we have

160084
; multiplying this by 2, and subtracting the product, 320168, there

is no remainder.

Then, 200 + 30 + 2, or 232, is the required cube root.

176. Omitting the ciphers for the sake of brevity^ and con-

densing the process, the work of the example of § 175 will

stand as follows ;
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1200

180

9

1389
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177. In the example of § 175, the first complete divisor is

3a2 +3ab + b2
. (1)

The next trial divisor is 3 (a -f b)
2

,
or 3 a2

-f 6 ab + 3 b2.

This may be obtained from (1) by adding to* it its second

term, and double its third term.

That is, if the first number and the double of the sec-

ond number required to complete any trial divisor be
added to the complete divisor, the result, with two
ciphers annexed, will give the next trial divisor.

This rule saves much labor in forming the trial divisors.

Ex. Find the cube root of 157464.

157464 |_54_

125

7500

600

16

8116

32464

32464

EXERCISE 33

Find the square roots of the following :

i. 5294601. 3. .00098596. 5. .0037319881.

2. 68.7241. 4. 567762.25.

Find the cube roots of the following :

6. 658503. 9. .000070444997.

7. 1953125. 10. .000001601613.

8. 748.613312.

Find the first four figures of the square roots of :

11. 3. 12. f 13. if- 14. f 15- iM
Find the first four figures of the cube roots of :

16. 5. 17. 16. 18. J. 19- -~- 20 - *V
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OTHER POWERS

178. A Series is a succession of terms.

A Finite Series is one having a limited number of terms.

An Infinite. Series is one having an unlimited number of

terms.

179. In §§ 103 and 168 we gave rules for finding the square
or cube of any binomial.

The Binomial Theorem is a formula by means of which any

power of a binomial may be expanded into a series.

180. Proof of the Binomial Theorem for a Positive Integral

Exponent.

The following are obtained by actual multiplication :

(a + x)
2 = a2 + 2 ax + x2

;

(a + x)
s = a?+3a2x + 3ax2 + xi

',
.

(a + x)
4 = a4 + 4 a3x + 6 cPx2

-f 4 ax3 + x4
;

etc.

In these results, we observe the following laws :

1. The number of terms is greater by 1 than the exponent
of the binomial.

2. The exponent of a in the first term is the same as the

exponent of the binomial, and decreases by 1 in each succeed-

ing term.

3. The exponent of x in the second term is 1, and increases

by 1 in each succeeding term.

4. The coefficient of the first term is 1, and the coefficient of

the second term is the exponent of the binomial.

5. If the coefficient of any term be multiplied by the expo-
nent of a in that term, and the result divided by the exponent
of x in the term increased by 1, the quotient will be the

coefficient of the next following term.

181. If the laws of § 180 be assumed to hold for the expan-
sion of (a-f- x)

n
,
where n is any positive integer, the exponent

of a in the first term is n, in the second term n — 1, in the

third term n — 2, in the fourth term n — 3, etc.
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The exponent of x in the second term is 1, in the third term

2, in the fourth term 3, etc.

The coefficient of the first term is 1*; of the second term n.

Multiplying the coefficient of the second term, n, by n — 1,

the exponent of a in that term, and dividing the result by
the exponent of x in the term increased by 1, or 2, we have

Vl \
u ~

) as the coefficient of the third term
;
and so on.

1.2 '

Then, (a + x)
n = an + nan~ lx +

n
^"^

1 ) ^-2x2

n(n-l)(n-2) _^, (1)
1.2-3

V '

Multiplying both members of (1) by a + a, we have

(« + x)^ 1 = «»+! + nanx -4-
w(n ~"

X) an~W + W CW ~ 1)C»- 2) g>-2g8 + ...

1 • 2i 1 • '- • o

+ anx+ nan~ 1x2 +
n (n ~ ^ an~2x* + — .

1 • ii

Collecting the terms which contain like powers of a and x, we have

(a + z)
n+1 = an+1 + (n + l)a

nx + pO*-
1 ) + nla*- 1*2

rn(n-l)(n-2) . n(n-l)
"] ^^ ...

L 1-2.3 1-2 J

= a"*1 + (n + l)a
nx + np-=-^ +

lla""1*2

1-2 L 3 J

Then, (a 4- x)
n+1 = ^n+1 + O 4- l)a

nx + n r^-Ha"" 1*2

= a** 1 + (n + l)a"x + (n + *)* o"-^2

(w+l)ii(n-l) 2z3 + .... (2)
1.2-3

K
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It will be observed that this result is in accordance with

the laws of § 180
;
which proves that, if the laws hold for any

power of a -f x whose exponent is a positive integer, they also

hold for a power whose exponent is greater by 1.

But the laws have been shown to hold for (a -f- x)
4
,
and

hence they also hold for (a + x)
5

;
and since they hold for

(a -f- x)
5

, they also hold for (a + #)
6

;
and so on.

Therefore, the laws hold when the exponent is any positive

integer, and equation (1) is proved for every positive integral

value of n.

Equation (1) is called the Binomial Theorem.

In place of the denominators 1 • 2
; 1-2-3, etc., it is usual to write

[2, [3,
etc.

The symbol |_n,
read " factorial w," signifies the product of the natural

numbers from 1 to n, inclusive.

The method of proof exemplified in § 181 is known as Mathematical

Induction.

182. Putting a — 1 in equation (1), § 181, we have

(i+ a?)»
= i+n^+^r 1 > g»+

n (n-yn -- 2
) ^+...-

\2_ [3

183. In expanding expressions by the Binomial Theorem,
it is convenient to obtain the exponents and coefficients of the

terms by aid of the laws of § 180.

i . Expand (a + x)
5

.

The exponent of a in the first term is 6, and decreases by 1 in each

succeeding term.

The exponent of x in the second term is 1, and increases by 1 in each

succeeding term.

The coefficient of the first term is 1
;
of the second, 5.

Multiplying 5, the coefficient of the second term, by 4, the exponent of

a in that term, and dividing the result by the exponent of x increased by

1, or 2, we have 10 as the coefficient of the third term
;
avid so on.

Then, (a + a)
5 = a5 + 5 a4x + 10 a'

6x +10 aV + 6 ax v + x6.
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It will be observed that the coefficients of terms equally distant from
the ends of the expansion are equal ;

this law will be proved in § 185.

Thus the coefficients of the latter half of an expansion may be written

out from the first half.

If the second term of the binomial is negative, it should be

enclosed, negative sign and all, in parentheses before applying
the laws.

2. Expand (1
—

xf.

= 16 4-6.1&. (-x) + 15.1*. (-a-)
2 + 20- 1". (-*)•

+ 15 • I2 .

(
-

X)4 + 6 . 1 • (- X)
5 + (- *)•

= 1 - 6 x + 15 x2 -20 x3 + 15 x4 - 6 x5 + x6 .

If the first term of the binomial is an arithmetical number, it is con-

venient to write the exponents at first without reduction
;
the result

should afterwards be reduced to its simplest form.

If either term of the binomial has a coefficient or exponent
other than unity, it should be enclosed in parentheses before

applying the laws.

3. Expand (3 m2 — Vn)
4
.

(3 m2- Vny = [(3 m2
) + (- ?ii)]

4

= (3 ra2)* + 4 (3 m2
)
3
(
- ni) + 6(3 m2

)
2(- ni)

2

+ 4 (3 m2
) (
- niy + (- nty

= 81 m8 - 108 m*f»£ + 54 m*n$ - 12 m2n + nl

A trinomial may be raised to any power by the Binomial

Theorem, if two of its terms be enclosed in parentheses, and

regarded as a single term
;
but for second powers, the method

of § 167 is shorter.

4. Expand (x
2 -2x- 2)

4
.

(X
2 _ 2 x - 2)4 = [(x

2 _ 2x) + (- 2)]*

= (x
2 - 2 x)

4 + 4 (x
2 - 2 x)

3(- 2) + 6 (x
2 - 2 x)

2
*;- 2)*

+ 4(x
2 -2x)(-2) 3 + (-2) 4

= x8 - 8 x? + 24 x« - 32 x6 + 16x*

_ 8 (x6 - 6 x5 + 1 2 x4 - 8 Xs)

+ 24(x
4 -4x3 + 4x2

) -32(x2 -2x)+ 16

= x8 - 8 x1 + 16 xe+ 16 x5 - 56x4-32x3 + 64 x2 + 64x + 16.
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EXERCISE 34

Expand the following :

2. (x-yf. \3n J

3 . (i-*p.
««• (2c-*-icr^.

W '
'

16. (1
- a2

)'
2
.

5. (a
2 -

ft)\ \ _ '

, _

18. (a + 6)
16

.

7. (3 m — 4 n)
4
. .. ~

8. (^-2g) 6
.

I9 '

(2
a
"t+

i~=fJ

9. (ar
2 + ^)

5

20 . (a^-7/V)
11

.

10. (2a~* + ^)
7
. 21. (a + ^-c)

4
.

/^ \6 22. (x
2 - 2 a - 3)

4
.

12.

23. (m
2 - 2 m + I)

4
-

a2 &2
\

8
24. (a

2 + x + l)
5

.

& ay 25. (1 + c + c
2

)
,2\6

184. To find the rth or general term in the expansion of

(a + x)
n

.

The following laws hold for any term in the expansion of

(a + x)
n

,
in equation (1), § 181 :

1. The exponent of x is less by 1 than the number of the

term.

2. The exponent of a is n minus the exponent of x%

3. The last factor of the numerator is greater by 1 than the

exponent of a.

4. The last factor of the denominator is the same as the

exponent of x.

Therefore in the rth term, the exponent of x will be r — 1.

The exponent of a will be n — (r
—

1), or n — r + 1.

The last factor of the nu 111 crater will be n — r + 2.

The last factor of the denominator will be r — 1.
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Hence, the rth term

n(n - 1)O -
2)

. • .

(n
- r + 2) n_r+1 r-1 w i

In finding any term of an expansion, it is convenient to obtain

the coefficient and exponents of the terms by the above laws.

Ex. Find the 8th term of (3 a* - &-1

)
11

.

We have, (3 ah - 6" 1
)
11 = [(3 ah) + (- ft"

1
)]

11
.

In this case, n = 11, r = 8.

The exponent of (— b' 1
) is 8 — 1, or 7.

The exponent of (3 a%) is 11 — 7, or 4.

The first factor of the numerator is 11, and the last factor 4 + 1, or 5.

The last factor of the denominator is 7.

Then, the 8th term = U • 10 9-8- 7 -6- 5
Jw_ &_n 7

1.2.3.4.5.6.7^ ;i ;

= 330(81 a2
) (- 6"7

) = - 26730 a2&"7
.

If the second term of the binomial is negative, it should be enclosed,

sign and all, in parentheses before applying the laws.

If either term of the binomial has a coefficient or exponent other than

unity, it should be enclosed in parentheses before applying the laws.

Find the :

exercise 35

x. 5th term of (a + b)K ^ q{ _ JV*
2. Tth term of (x-y)

10
.

3 xj
'

3. 6th term of (1
-

a)
11

. 8 . 6th term of f^+ -^
lr

4. 4th term of (a
2 — &3)

8
.

5. 8th term of (d - 2 #J» g . 5th term of (
/«
_Ji)\

6. 10th term of (m's + r> )

*

,.
,1 * p / /- « , N7v

2/ io. 4th term of (xVy — -f y-i)
7

.

185. Multiplying both terms of the coefficient, in (1), § 184,

by the product of the natural numbers from 1 to n — r -f- 1, in-

clusive, the coefficient of the rth term becomes

w(n-l)--(n — r + 2)-(tt-r + l)-..2-l [n

\r
— 1 x 1 • 2 ...

(n
- r + 1)

"

[r
— 1

\

n — r + l
'
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Since the number of terms in the expansion is n -j- 1, the rth

term from the end is the (n
— r -f 2)th from the beginning.

Then, to find the coefficient of the rth term from the end, we

put in the above formula n — r -f 2 for r.

Then, the coefficient of the rth term from the end is

or

\n
— r + 2 — l \n

—
(n
— r + 2)+l

'

\n
— r + 1 \r

— 1

Hence, in the expansion of (a + a?)
w

,
the coefficients of

terms equidistant from the ends of the expansion are

equal.

186. It was proved in § 181 that, if n is a positive integer,

(a + x)
n = an + nan~ lx +

n (n — 1 ) an
-2z2

v J 1-2

,
n (n — l)(n — 2) _- o .

+ v

la 2 q + '"'

If n is a negative integer, or a positive or negative fraction,

the series in the second member is infinite (§ 178) ;
for no one

of the expressions n — 1, n — 2, etc., can equal zero
;
in this

case, the series gives the value of (a + x)
n
, provided it is

convergent.

As a rigorous proof of the Binomial Theorem for Fractional and Nega-
tive Exponents is too difficult for pupils at this stage of their progress, the

author has thought best to omit it
; any one desiring a rigorous algebraic

proof of the theorem, will find it in the author's Advanced Course in

Algebra, § 575.

187. Examples.

In expanding expressions by the Binomial Theorem when

the exponent is fractional or negative, the exponents and

coefficients of the terms may be found by the laws of § 180,

which hold for all values of the exponent.

I. Expand (a + xy to five terms.

The exponent of a in the first term is §, and decreases by 1 in each

succeeding term.
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The exponent of x in the second term is 1, and increases by 1 in each

succeeding term.

The coefficient of the first term is 1
;
of the second term, J.

Multiplying §, the coefficient of the second term, by — |, the exponent
of a in that term, and dividing the product by the exponent of x increased

by 1, or 2, we have —
I as the coefficient of the third term

;
and so on.

Then, (a +«)*- a% + f ef*as - \a~^x
L + ,^a~*x

8 - ^gT^o4 + •••.

2. Expand (1 + 2 x~^)~
2 to five terms.

Enclosing 2 z* in parentheses, we have

(1+2 x~V2 = [1 + (2 aT*)]"
2

= l"2 - 2 • 1-3 .

(2 x~i) + 3 • I"4 •
(2 x~i)

2

- 4 • I"5 •

(2 x"i)
3 + 5 • I"6 •

(2 x~i)*
- •••

= l-4x"U 12z- 1 -32x"£ + 80x-2 +

By writing the exponents of 1, in expanding [1 -f (2x~^)]
-2

,
we can

make use of the fifth law of § 180.

3. Expand to four terms.

^V1 - 3 x*

Enclosing a-1 and — 3 x* in parentheses, we have

-_JL_ = J = [(«-i) + (-3xi)]-*
Va-i-3x* (a"

1 -3 a*)*

= (a"
1
)

-
* -

1 (a-
1)"^- 3 xi) + { 0-T^(- 3 xi)

2

-H(a-i)-
:

¥(-3a*)«+...

= as + afxi + 2 afet + -1
/- a'^x + •••

EXERCISE 36

Expand each, of the following to five terms :

1. (a + x)*. 4- Va-b. 7. (a* + 2 &)*

1

2. (1 + *)-*.

5 *

(a + a;)

5
'

8 - (rf-4^)"*.

3. (1
—

x) *. VI — x x~* + 3 y
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I2 .
!___. 14. (m*-3rr*)-3.10.

(m~
3 + *

n. V[(a~
2—

66-c)
7

]. \2/ «/ xSva41 J

188. The formula for the rth term of (a + x)
n

(§ 184) holds

for fractional or negative values of n, since it was derived from

an expansion which holds for all values of the exponent.

Ex. Find the 7th term of (a
- 3 x~^)~K

Enclosing — 3 aft in parentheses, we have

(a
- 3 x"i)"i = [a + (- 3 jc~f)]"i.

The exponent of (— 3 #~t) is 7 — 1, or 6.

The exponent of a is — ± —
6, or — &

The first factor of the numerator is — J, and the last factor — ^ + 1,

or - ¥•
The last factor of the denominator is 6.

Hence, the 7th term

1.23.4.5.6

3»
v y

9

_. ,
_ EXERCISE 37

Find the :

a-V(-3ari)«

1. 6th term of (a -f *)*.
6. 11th term of V(m 4- n)

5 -

K4 , . -
, 7N -i 7. 7th term of (a~

2 -2 &V 2
.

2.- 5th term of (a
—

0) ».
' v }

3. 7th term of (1 + x)~\
S ' 8th term of

,_
*

r
'

* v ^ ;
(rf + y

2
)
4

4. 8th term of (1
-

&)*. 9. 10th term of (ar
5 + y*)'*

5. 9th term of (a
-

x)~
3

. 10. 6th term of (a*
- 2 6" 4

)"^

11. 5th term of (m+3n-
8

)*

1
12. 9th term of

^[(a
3 + 3&-fy]
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189. Extraction of Roots.

The Binomial Theorem may sometimes be used to find the

approximate root of a number which is not a perfect power of

the same degree as the index of the root.

Ex. Find V25 approximately to five places of decimals.

The nearest perfect cube to 25 is 27.

We have v"25 = ^27-2 = [(3
8
) + (

-
2)]*

= (3
3
)
} + i(3

8
)"*(- 2)- i(3

3
)~*(- 2)2

= 3--

+ A(33
)

T(-2)«-.

2 4 40

3 . 32 9 • 35 81 • 38

Expressing each fraction approximately to the nearest fifth decimal

place, we have

^/25 = 3 - .07407 - .00183 - .00008 = 2.92402.

We then have the following rule :

Separate the given number into two parts, the first of
which is the nearest perfect power of the same degree as
the required root, and expand the result by the Binomial
Theorem.

If the ratio of the second term of the binomial to the first is a small

proper fraction, the terms of the expansion diminish rapidly ;
but if this

ratio is but little less than 1, it requires a great many terms to insure any

degree of accuracy.

EXERCISE 38

Find the approximate values of the following to five places
of decimals :

i. Vl7. 2. V51. 3. ^60. 4. ^14. 5. \/84. 6. a/35.

PROPERTIES OF QUADRATIC SURDS

190. A quadratic surd (§ 70) cannot equal the sum of
a rational expression and a quadratic surd.

For, if possible, let (a)? = b -f (c)*,
1 1

where 6 is a rational expression, and (a)
2 and (c)

1
quadratic surds.
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Squaring both members, a = 62 + 2 6(c)'
2

-f c,

or, 2 6(c)* = a- 62 - c.

Whence, (c)
z
= a ~ ft2 ~ c

.

26

That is, a quadratic surd equal to a rational expression.

But this is impossible ; whence, (a)
2 cannot equal 6 +(c) 2

.

191. If a +(&)* = c + (cf)*, where a and c are rational ex-

pressions, and (5)* and (<f)* quadratic surds, then

a = c, and (&)* - («!)*.

If a does not equal c, let a = c + £
; then, # is rational.

Substituting this value in the given equation,

c + aj-f (6)* = c + (d)*, or £+(&)* =(d)*.

But this is impossible by § 190.

i
,

i

Then, a = c, and therefore (6)
2
=(d)'

z
.

192. If (a + V6)^ as Vx + Vy, where a, b, x, and y are ra-

tional expressions, then {a - VS) 2 == Vas - Vy.

Squaring both members of the given equation,

a + V6 = x + 2V:*;?/ + y,

Whence, by § 191, a = x + y,

and (6)1 s= 2(xy)*

Subtracting, a — (6)
2 = x — 2(scy)* + y.

Extracting the square root of both members,

(a -y/ly -Vx-y/y.

193. Square Root of a Binomial Surd.

The preceding principles may be used to find the square

roots of certain expressions which are in the form of the sum

of a rational expression and a quadratic surd.
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Ex. Find the square root of 13 — Vl60.

Assume,
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EXERCISE 39

Find the square roots of the following :

i. 5 + 2V6. 9 . 2c-2(c
2 -d2

)K

2. 8 — 2V12. io. m + 2Vmn- n2
.

3- 8a-2aVl5. II# a _ Va2 - £2
.

4 . 9 + 2(14)1 I2 . 5» + a>V21.

5. 7 + 4(3)* 13. 113-12(85)1

6. 17-12V2. 14. 366 + 24V2I0.

7. 2 + (3)4. 15. 540 -14 VII.

8. l + i V3.

195. Solution of Equations having the Unknown Numbers under

Radical Signs.

1. Solve the equation V#2 — 5 — x = — 1.

Transposing — x, Vx2 — 5 = x — 1.

Squaring both members, cc
2 — 5 = #2 — 2j+1.

Transposing, 2 x = G
; whence, g = 3.

(Substituting 3 for x in the given first member, and taking the positive

value of the square root, the first member becomes

V9"^5"- 3 = 2 - 3 = - 1
;

which shows that the solution x = 3 is correct.)

We then have the following rule :

Transpose the terms of the equation so that a surd term
may stand alone in one member; then raise both mem-
bers to a power of the same degree as the surd.

If surd terms still remain, repeat the operation.

The equation should be simplified as much as possible before perform

ing the involution.
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2. Solve the equation V2 x — 1 -+ V2 x + 6 = 7.

Transposing V2 x — 1, a/2 x + 6 = 7 — V2 x — 1.

Squaring, 2x4-0 = 49 - 14 V2 x - 1 + 2 x — 1.

Transposing, 14 v 2 x — 1 = 42, or V2 x — 1 = 3.

Squaring, 2 x — 1 = 9
; whence, x = 5.

3. Solve the equation Vcf — 2 — Va7=
V# — 2

Clearing of fractions, x — 2 — Vx2 — 2 x = 1.

Transposing, — Vx'2 — 2 x = 3 — x.

Squaring, x2 — 2 x = 9 — 6 x + x2.

Transposing, 4 x = 9, and x = - •
.

4

(If we put x = -
,
the given equation becomes

If we take the positive value of each square root, the above is not a

true equation.

Authorities differ as to whether it is allowable in such instance to

choose the negative value for one of the square roots. It seems more

consistent to adhere to the signs expressed in the given equation. If this

rule is followed, the above equation has no solution.

EXERCISE 40

Solve the following equations ; verify each root :

1. Vx + 5 + 2 = 5. 2. Va + 7 — Vx= 1.

3. Vx2 + ±x _3-Va2+ a + 6:=0.

4. -^ + 11 + 4 = 7. 8 . V^-WS+8 = -
12

Vtf-f-8
5. Var* — 11 -f 1 = #. /- , 1 1V a? 4- 1 1 _ V if + 19

6. Vx - 28 = 14 - Vx. VS-3 Vs%2

/- , /Tk 12 _ V4a; + 5 + Va; + 3
7. Vif+VlO— if =— . 10. — n '

!— — 5.

VlO — x Vi a + —V» + 3
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ii
3y2 a? + 4 = 3V2a? + 2

_ a
Va + # +Va — # _ 1

V2 a; V2 # -|- 1 Va + # — Va — x *

13- Va? + m+ Va? — w = V2 m — ri + 3 #.

14. Va — y-\- V& — y= Va~^

15. V2s + 3-V3s + 3=-Vs-10.

16. A/r+Wf^"= 1 + x. 19- Va2 -5a;-8 = V.r-4.

17. x\U-l- V#= a. 20 Vb2 + x + Vc2 + x = b^

y/b
2 + x — Vc- -\-x

c

l8 V6-f a? +V^= &

V& -\-x
—Va

VII. IMAGINARY NUMBERS

196. If a number involves an indicated even root of a nega-

tive number, it is called imaginary. Such numbers depend

upon a new unit, V— 1 or (— 1)* ;
as V— 2, V— 3.

197. An imaginary number of the form V— a is called a

pure imaginary number, and the sum of a real and an imagi-

nary is called a complex number
;
as a + bV— 1.

198. Meaning of a Pure Imaginary Number.

If Va is real, we define Va as an expression such that,

when raised to the second power, the result is a.

To find what meaning to attach to a pure imaginary number,

we assume the above principle to hold when Va is imaginary*

Thus, V— 2 means an expression such that, when raised to

the second power, the result is — 2
;
that is, (^

(_2^)
2=-2.

In like manner, (V^l) 2 = (- 1*)
2= - 1

;
etc.
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OPERATIONS WITH IMAGINARY NUMBERS

199. By § 198, (V^) 2 = (-5*)
2=--5.

(1)

Also, (V5V^l)
2

=(V5)
2

(V^l)
2

=5(-l)= -5, (2)

or (V=5)
2

=(5*)
s

•(-l^)
2

=5(-l) = -5.

From (1) and (2), (V^5)
2=

(V5V^) 2
.

Whence, V11^ = -y/5V-l, or 5*(- 1)*.

Then, every imaginary square root can be expressed as the

product of a real number by V— 1. It is advisable to reduce

every imaginary to this form before performing the indicated

operations.

V— 1 is called the imaginary unit ; it is often represented by i.

In all operations with imaginary numbers, it is advisable to

reduce the number to the form a + bi where a and b are real.

Ex. Add V^4 and V-36.
V^4 = 2*\ V- 36 = 6 i.

2t + 6 i = 8 *\ or 8v^l, or 8 (- l)i

The Powers of » : V — 1= i
1

;

(V"=t:)
3--v^i=^;

Note that the even powers of i are real, the odd powers

imaginary, the fifth power like the first power, the sixth

power like the second, etc.

Ex. 1. Multiply V-^2 by V^S.

vr^2 = iv/
2, v^3 = iV3.

(iV2) (iVS) = <*V5=- \/S, or -(€)*.
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Ex. 2. Divide (-40)2 by (-5)'.

(- 40)4 = i (40)2, (- §) = i (5)*

-^—% = (8)* = 2 (2)*, or 2 v2.

EXERCISE 41

Simplify the following :

i. V^l^+V^l.
2. 2V:=^9 + 4V^25-3V^36.

3. 2V::r3-3V^27 + 5V:=:12.

4. 7 V^a2 - 3V- 49 a2 - 2V^4a2
.

5. iV^8 + iV^32-lV^162.
6. Add2+V:^to3-2vr=: 27.

7. From 8-6 V- 121 subtract 5 + 2 V-169.

8. From a - V26-62 -l take 6 - V2 a - a2 - 1.

Multiply the following :

9. V^byV^T. 11. -V^Wby V^~6. .

10. V^by V-144. 12. _V-432by-V:=~75.

13. V— a2

, V— 5 2

,
and —V— c2 .

14. 2+V-3by 3-4V:r3.

15. 5-2V-Tby 4-3i.

16. 4t"VaJ — SiVy by 9i'V# +V— 2/.

Expand the following :

17. (2-V^3)
2

. 18. (3V^2 + 2V":^3)
2

.

19. (2V^4-3V^)(2V^-3V'^7).
20. (a

—V— 6)
8
.
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Divide the following:

21. V^^byV^. 23. -Vl^by-V^
22. V— 54 by —V— 3. 24.

—V— 96a6 by V— Sab.

25. 6^V6~VS84 by -V^H

GRAPHICAL REPRESENTATION OF IMAGINARY NUMBERS

200. Let be any point in the straight line XX 1

.

We may suppose any positive real

number, + a, to be represented by /^*\
the distance from to A, a units to 2 A' -& 0+^ A x
the right of O in OX.
Then any negative real number, —

a, may be represented

by the distance from to A', a units to the left of in OX'.

201. Since — a is the same as (-f-a)x(- 1), it follows

from § 200 that the product of + a by — 1 is represented by

turning the line OA, which represents the number + a,

through two right angles, in a direction opposite to the motion

of the hands of a clock.

Then, in the product of any real number by — 1, we may
regard — 1 as an operator which turns $he line which repre-

sents the first factor through two right angles, in a direction

opposite to the motion of the hands of a clock.

202. Graphical Representation of the Imaginary Unit i (§ 196).

By the definition of § 198,
— 1 = 1 x ii

Then, since one multiplication by i, fol-

lowed by another multiplication by i, turns

the line which represents the first factor

X- 1
—^ 1 2 through two right angles, in a direction

opposite to the hands of a clock, we may
regard multiplication by 1 as turning the

line through one right angle, in the same

direction.

Thus, let XX and YY' be straight lines intersecting at right angles

at O.

Y
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Then, if + a be represented by the line OA, where A is a units to the

right of in OX, + ai may be represented by OB, and — ai by OB',
where B is a units above, and B' a units below, O, in 77'.

Also, + i may be represented by OC, and — i by OC, where C is one
unit above, and C one unit below, 0, in 77'.

203. Graphical Representation of Complex Numbers.

We will now show how to represent the complex number
a + bi.

Y
B

rO

,V*>A
<v

Let XX and 77' be straight lines intersecting
at right angles at 0.

Let a be represented by OA, to the right of O,

f
if a is positive, to the left if a is negative.

Let bi be represented by OB, above if b is

positive, below if b is negative.

Draw line AC equal and parallel to OB, on the same side of XX as

05, and line OC.

Then, 00 is considered as representing the result of adding bi to a
;

that is, OC represents the complex number a + bi.

The figure represents the case in which both a and b are positive.

As another illustration, we will show how to represent the

complex number — 5 — 4 i.

Lay off OA 5 units to the left of O in OX,
and OB 4 units below in YY'.

Draw line ^40 below XX, equal and parallel

to OB, and line OC.

Then, 06y

represents — 5 — 4 i.

The complex number a + bi, if a is positive and

b negative, will be represented by a line between

OX and 07'
;
and if a is negative and b positive, by a line between 07

and OX.
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204. Graphical Representation of Addition.

We will now show how to represent the result of adding b to

<i, where a and b are any two real, pure imaginary, or complex
numbers.

Let the line a be represented by OA, and the line

h by OB.

Draw the line A C equal and parallel to OB, on

the same side of OA as OB, and the line OC.

Then, 0(7 is considered as representing the result

of adding b to a ;
that is, 00 represents a + b.

The method of § 20*3 is a special case of the above.

If a and b are both real, B will fall in OA, or in AO produced

through O.

The same will be true if a and b are both pure imaginary.
If one of the numbers, a and b, is real, and the other pure imaginary,

the lines OA and OB will be perpendicular.

As another illustration, we will show how to represent

graphically the sum of the complex numbers 2 — 5 i and
-4 + 3*.

The complex number 2 — 5 i is represented by the

line OA, between OX and OF.
The complex number — 4 4- 3 i is represented by

the line OB, between Y and OX'.

Draw the line BG equal and parallel to OA, on

the same side of OB as OA, and the line OC
Then, the line OC represents the result of adding

- 4 + 3 i to 2 — 5 i.

205. Graphical Representation of Subtraction.

Let a and b be any two real, pure imaginary, or complex

numbers.

Let a be represented by OA, and b by OB
j By

and complete the parallelogram OBAC.
By § 204, 0^4 represents the result of adding

the number represented by OB to the number

represented by OC.

That is, if b be added to the number represented

by OC, the sum is equal to a
; hence, a — b is

represented by the line OC.
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EXERCISE 43

Represent the following graphically :

i. The sum of 4 i and 3 — 5i.

2. The sum of — 5 i and — 1 + 6 i.

3. The sum of 2 + 4 * and 5 — 3 i.

4. The sum of — 6 -f 2 1 and — 4 — 7 i.

5. Represent graphically the result of subtracting the second

expression from the first, in each of the above examples.

VIII. QUADRATIC EQUATIONS

206. A quadratic equation is an equation in which the

highest power of the unknown number is the second.

207. The first power of the unknown number may or may
not appear. If the equation does, not contain the first degree
of the unknown, the roots are of the same absolute value but of

different sign. E.g. x2 = a2

; then, (x + a)(x
—

a)
=

0, or x = a,

x = — a.

The equation may also be solved by extracting the square
root of each member of the. equation, whence, x = ± a.

208. If the equation contains both the first and second

powers of the unknown, the first member must be reduced to

the form a2 + 2 ab + b2 before extracting the square root. Such

transformation of the equation is called completing the square.

209. A quadratic equation containing the first and second

powers of the unknown number is called an affected quadratic.

An equation containing the second degree only of the unknown
number is a pure quadratic.

AFFECTED QUADRATIC EQUATIONS

210. First Method of Completing the Square.

By transposing the terms involving x to the first member,
and all other terms to the second, and then dividing both
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members by the coefficient of x2

, any affected quadratic equa-
tion can be reduced to the form x2

-f- px — q.

We then add to both members such an expression as will

make the first member a trinomial perfect square (§ 103, II) ;

an operation which is termed completing the square.

Ex. Solve the equation x2
-f 3 x = 4.

A trinomial is a perfect square when its first and third terms are per-

fect squares and positive, and its second term plus or minus twice the

product of their square roots (§ 103, II).

Then, the square root of the third term is equal to the second term

divided by twice the square root of the first.

Hence, the square root of the expression which must be added to

x2 + 3 x to make it a perfect square is 3 x -f- 2
jc,

or |.

Adding to both members the square of |, we have

X2 + 3 X + (|)2 =rr*+ f =a \5
-.

Equating the square root of the first member to the ± square root of

the second, we have
x + | = ± | .

Transposing f ,
x = —

f + § or — §
—

§
= 1 or —- 4.

We then have the following rule :

Reduce the equation to the form x2 + px = q.

Complete the square, by adding to both members the

square of one-half the coefficient of a?.

Equate the square root of the first member to the
± square root of the second, and solve the linear equa-
tions thus formed.

21 1. The objection to the method of § 210 is that in dividing

by the coefficient of x2
,
or in adding the square of one-half the

coefficient of x, fractions which make the solution cumbersome

may be introduced.

212. If the coefficient of x2
is a perfect square, it is some-

times convenient to complete the square directly by the prin-

ciple stated in § 210; that is, by adding to both members the

square of the quotient obtained by dividing the coefficient of x

by twice the square root of the coefficient of x2
.
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Ex. Solve the equation 9 x2 — 5 x = 4.

5 5
Adding to both members the square of

,
or -,2x3. 6

9*2-5* + (5)2 = 4 +JS = W-

Extracting square roots, 3 a: — §
= ± J

B
3

-

Then, 3 se
—

| ± a^ = 3 or f ,
and x = 1 or — j.

213. Second Method of Completing the Square.

Every affected quadratic equation can be reduced to the form

ax2 + bx -|- c = 0, or ax2
-\-bx = — c.

Multiplying both members by 4 a, we have

4 a2x2 + 4 a&ac = — 4 ac.

We complete the square by adding to both members the square of

-t^- (§ 212), or b.

2 x 2a

Then, 4 a2£2 + 4 afoc + ft
8 = 62 - 4 ac.

Extracting square roots, 2 ax + 6 = ± V6- — 4 ac.

Transposing, 2ax =— b ± Vb2 — 4 ac.

Whence, x =
- & ± V6* - 4 ac

.

(1)
- a

We then have the following rule :

Reduce the equation to the form aac2 + bx =— c.

Multiply both members by four times the coefficient

of as*, and add to each the square of the coefficient of
x in the given equation.

The advantage of this method over the preceding is in

avoiding fractions in completing the square.

This method is sometimes called the Hindoo Method.

The result of the solution of ax2
4- bx + c = may be used as

a formula for solving any quadratic equation. Before apply-

ing the formula the equation must be reduced to the form

ax2 + bx -f c = 0.
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Ex. Solve 2 x2 — 7 x = — 3.

2 .x-
2 - 7 x + 8 = 0.

Here a = 2, £>=— 7, c = 3
; substituting in (1),

• = 3 or -.22 4 2

EXERCISE 44

Solve by the first method : (Verify each result.)

i. ar- 12^4- 32 = 0. 6. *2 + *_30 = 0.

z
2 + 7 z- 30 = 0.

7. 6 z
2
4-4 = -11 z.

4^-Tf— 8.
8 4*2-3* = 7.

16x2 -8x-35=0.
9 .

?_
2_^_M = o.

3 m2 -26 = 9 m2 -80. 3 2 6

3a;2 2a?-6 = 1 2_
x2 — 7#4-6 x— 6

Solve by second method : (Verify each result.)

ii. (3fc4-2)(2&H-3)= (fc-3)(2fc-4).

12.
30- 3°

07 iC-f 1

13. Vm -f 2 4- V3 m + 4 = 8.

14. (y-3y-(y + 2)*
= -65.

15. V5 4- x 4- V5 — x = -

16.
d-2

iVote i : In solving equations involving fractions or radicals reject any
root which does not satisfy the given equation.
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Solve by means of the formula in §213, (1): (Verify each

result.)

17. 3x2 -2x = A0.
5 13 1

18. 9x2+ 18x=-8. .

6 * 9z" 1S

1 1 a2 - 17
20.

x + 3 x-5 x2 -2x-15

21 .

y~ c y + c^ if-Bc
2

^

y+ c y — c y
2 — <?

1 Iz 15
22. +

-2 24(2 + 2) z
2 -4

1 ,1 ,
1 , 1 n

23. -H 1 |-- = 0o
# + <z a #-+- 6 6

24. #=F* + £gtf.
2 Solve fori.

a; — 2 #4-2 x — 2 ^ /a XT . v
2«. ?__ =— 1. (See Note 2.)

26.
^+ 1

.i_
fl + 2

.
a?+ 3

=_3
# — 1 # — 2 x — 3

Note 2 : In solving fractional equations containing improper fractions

the operations are greatly simplified by reducing the fractions to mixed

numbers and then combining the integers thus obtained.

Note 3 : An equation is said to be in the quadratic form when it is

expressed in three terms, two- of which contain the unknown number,
and the exponent of the unknown number in one of these terms is ticicc its

exponent in the other ; as,

xe _ xz _ iq . 3* + xi _ 72 =
;

etc.

Equations in the quadratic form may be readily solved by
the rules for quadratics.

1. Solve the equation x6 — 6 Xs = 16.

Completing the square by the rule of § 210,

x6 - x3 + 9 = 10 + (
.) = 25.
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Extracting square roots, x8 — 3 = ± 5.

Then, x3 = 3 ± 5 = 8 or - 2.

Extracting cube roots, x — 2 or — v2.

There are also four imaginary roots, which may be found by the

method of §§ 110; 213, (1).

Solve the equation 2 x -f 3 V# = 27.

_ i

Since Vx is the same asx^, this is in the quadratic form.

Multiplying by 8, and adding 32 to both members § (213),

16 x + 24 y/x + 9 = 216 + 9 = 225.

Extracting square roots, 4 Vx +'8= ± 15.

Then, 4Vx = - 3 ± 15 = 12 or - 18.

Whence, Vx = 3 or —f, and sc = 9 or *£.

EXERCISE 45

Solve the following equations and verify each root:

i. 3a2 -4a = 4.
(

4. 2* = 10-£2 +5*.

„ n 2 4* o 2 , oo 5- 6v2— 14^ = 9 v — 22.
2. 7 ar — 17 » = 2 x2 + 22.

6
^~ 3 . x + 5 __ 8

3. 42/
2 + 92/-13 = 0.

'

a; + 3 »-ll~ 7*

3 ra - 7 1 2 - ra
7-

m(m-f-2) 3(m-2) ra2 -4"

M_ = 4. 9 . thJ+EH^^BL

, . 21
io. l + 2V3o;+ 2= /o

—
7-r,'V3 #-f2

ii. VaT^ + 2V2~& =

12.
11 20 3 a

3v-4a 2v-\-a 6v2 — 5 av — 4 a2 5 a'
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a2 -b*
13- -=-+

b — z ab

2 x

15. x*-2 ax -f 6 b2 = 3 a2 + 7 a& - 5 bx.

16. (2 a - b + 5 c) a
2 + (b

- a + 4 p)a + 2 & - 3 a- c = 0.

17.
—1 |--H — +- = 0. Solve ford.
d + a a d+b b

Q Vm2
-f x

2 + Vm2 — x2 m
Io. - = .

Vm2
-f x

2 — -y/m
2 — x2 x

19. x4 -7a2 + 12:=0. 21. 6 a- 2 -11 a- 1 = 35.

20. a6 — 7#3=8. 22. x? — x* — 6 = 0.

23. ar
3 - 35 x§ = - 216.

24. x2 + 2 a + 10 + VV + 2 x + 10 = 30.

25. #2
4-3a# — 53 a2 = 2 a# -f- 3 a.

26. a?-* -29 a;-* =-100.

27. .T
2+ 14Var>+7a?-26 = 58-7a.

28. 5 (a + 2)* + (a? + 2)
= 36.

29. (a
2 + 4a4-2)

2 = 31+2(a
2 + 4a + 2).

30. a4 -8arJ + 10#2 + 24#-315 = 0.

31. What number is that to which if you add its square the

sum will be 42 ?

32. A rectangular field is 40 rods longer than it is wide. By
doubling its length and decreasing its width by 15 rods, the area

is unchanged. Find dimensions of the field.

32- The difference between two numbers is 7, and the dif-

ference between their cubes is 1267. Find the numbers.

34. The denominator of a fraction is 3 more than its numera-

tor and by adding the fraction to its reciprocal the sum is

2^. What is the fraction ?
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35. There is a number consisting of two digits whose sum

is 11. If from the number 3 times the product of the digits

is subtracted, the remainder will equal the sum of the digits.

Find the number.

36. A man sells goods for $120, gaining a per cent equal

to I the cost of the gooo^s. What was the cost of the goods ?

37. A picture 13 inches by 8 inches is surrounded by a

frame of uniform width whose area is 162 square inches.

Find the width of the frame.

38. A man put $ 2400 in a savings bank which paid inter-

est semiannually. At the end of a year he found that he had

to his credit $ 2496.96. What interest did the bank pay ?

39. A number of people plan an excursion which is to cost

them $ 30. It is found later that 3 of the party cannot go,

which increases the cost 50 cents to each member. How many
are there in the party and what did each one pay ?

40. A and B start together for a 6-mile walk. A's rate per hour

is \ mile more than B's, and he finds he can reach his destina-

tion in 24 minutes less time than B. What is the rate of each ?

41. An open rectangular box is 8 inches high. Its length

is 4 more than its width. Its volume is 768 cubic inches.

Find its inside dimensions.

42. In a given circle APB, a perpen-
dicular DP, dropped from a point P in

the circumference to the diameter AB,
is a mean proportional between the seg-

ments, AD and DB, of the diameter. If

the radius of the circle is 12 and DP is

2V5, how far is D from B?

43. An open rectangular box 5 inches deep (inside measure)
is made of 1-inch lumber. Its length is 1 inch less than twice

its width. The difference between the volumes when inside and

outside measurements are taken is 271 cubic inches. How much
sheet metal will be needed for lining the sides and bottom of

the box ?
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44. Two lines AB and CD intersect at in such a manner

that AO-OB=CO- OD. If CD = U,AO = 15, and AB = 18,

find CO.

45. A has a lease on a square room. He sublet to B a part

10 feet wide along one entire side of the room, at a rental of

$ 160 per month. The part of the room retained by A contained

704 square feet. How much rental per square
foot did B pay ? Explain your negative roots.

46. A tangent, PT, to a circle is a mean pro-

portional between the whole secant PD and the

external segment PE. If PT is 12, the radius

5, and PD passes through the center, find PE.

47. The upper base and the altitude of a trapezoid are equal,

the lower base is 20 and the area is 112. Find the upper base.

48. The length of a rectangle is V2 more than the side of a

given square, and its breadth is V2 less than a side of the

same square. The area of the rectangle is 1. Find the di-

mensions of the rectangle correct to three decimal places.

THEORY OF QUADRATIC EQUATIONS

214. Number of Roots.

A quadratic equation cannot have more than two dif-

ferent roots.

Every quadratic equation can be reduced to the form

ax2 + bx + c = 0.
*

If possible, let this have three different roots, n, ft, and r$.

Then, an2 + brx + c = 0, (1)

ar2
2 + br2 + c = 0, (2)

and ars2 + br3 + c = 0. (3)

Subtracting (2) from (1), a{rx
2 - r2

2
) + &(r*

- r2) = 0.

Then, a(n + r%) (n.
— r2 ) 4- &Oi — r2) = 0,

or, (n — r2 ) (ari + ar2 + 6)
— 0.

Then, by § 110, either ri
— r2 =* 0, or ar\ -f oft + ?> = 0.

But ri
— r2 cannot equal 0, for, by hypothesis, r*i and r2 are different.
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Whence, ari + ar-2, + 6 = 0. (4)

Iii like manner, by subtracting (3) from (1), we have

ari + an + 6 = 0. (5)

Subtracting (5) from (4), ar2
— an = 0, or r2

— n = 0.

But this is impossible, for, by hypothesis, r2 and n are different
;

hence, a quadratic equation cannot have more than two different roots.

215. The graphs of quadratic equations can be readily con-

structed by the method used in §§ 44-48.

Construct the graph of x- 6 = 0.

Placing the first member of the equation equal to y, we have

x2 — x — 6 = y.

a)

(2)

Assigning values to x, we obtain corresponding values of y. For

example,
Substituting x = in (2), we have y = - 6,

Substituting x = 2 in (2), we have y = —
4, etc.

x2 — x — 6 = ?y

2/
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The graph of every equation of the form x2 + px — q = or

ax2
-f bx -f- c = is a curve of the above form and is called a

parabola.

216. Sum of Roots and Product of Roots.

Let rx and r2 denote the roots of ax2
-f- bx + c = 0.

By § 213, (1), n = -ft + V5'-4qc
and ^ =

- b - Vb2 - 4 flC
.

2 a 2 a

Adding these values, n -f ra == ——- = — -•

2 a a

Multiplying them together,

nn = ^-{b^-iac) ( 103 j = 4_ae = c
.

4 a2 4 a2 a

Hence, if a quadratic equation is in the form ax2
-f bx

+ c = 0, the sum of the roots equals minus the coefficient
of x divided by the coefficient of a?2

, and the product of
the roots equals the independent term divided by the
coefficient of a?2 .

217. Formation of Quadratic Equations.

By aid of the principles of § 216, a quadratic equation may
be formed which shall have any required roots.

For, let ri and r2 denote the roots of the equation

ax2 + bx + c = 0, or a2 + — + - = 0. (1)
a a

Then by § 216, 5 = _ n - r2 ,
and G- = nr2 .

a a

Substituting these values in (1), we have

x2 — r\X — r2x + 7"ir2 = 0.

Or, (x
— r x ) (x

— r2) = 0.

Therefore, to form a quadratic equation which shall have

any required roots,

Subtract each of the roots from 05, and place the prod-
uct of the resulting expressions equal to zero.

Ex. Form the quadratic whose roots shall be 4 and —
-J.

By the rule, («
-

4) (x + J) = 0.

Multiplying by 4, {x - 4) (4 x + 7) = ; or, 4 x2 - 9 x - 28 = 0.
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DISCUSSION OF GENERAL EQUATION

218. The roots of a quadratic equation may take several

forms :

1. The roots may be rational, unequal, of the same sign.

2. The roots may be rational, unequal, of opposite sign.

3. The roots may be rational, equal.

4. The roots may be irrational, unequal.

5. The roots may be irrational, equal.

6. The roots may be irrational and the number under the

radical sign negative.

These forms and the causes for their existence are at once

seen when one considers the formula in § 213.

By § 213, the roots of ax2 + bx -f- c == are

— b 4- V&2 — 1 ac
-,

— b — -\/b
2 — 4 ac

r,= :£— and r2 =1 2a 2a

We will now discuss these results for all possible real values

of a, b, and c.

I. b2 — 4 ac positive.

In this case, i\ and r2 are real and unequal.

II. &*-4ac = 0.

In this case, rx and r2 are real and equal.

III. c = 0.

In this case, the equation takes the form

ax2 + bx = : whence x = or
a

Hence, the roots are both real, one being zero.

IV. b = 0, and c = 0.

In this case, the equation takes the form ax2 = 0.

Hence, both roots equal zero.

V. b2 — 4 ac negative.
• In this case, rx and r2 are imaginary (§ 196).

VI. 6 = 0.

In this case, the equation takes the form

ax2
-f c =

; whence, a? = ± \/
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If a and c are of unlike sign, the roots are real, equal in

absolute value, and unlike in sign.

If a and c are of like sign, both roots are imaginary.
The roots are both rational, or both irrational, according as

b2 — 4 ac is, or is not, a perfect square.

219. It is evident that irrational roots, whether real or

imaginary, must occur in conjugate pairs.

That is, in an equation of the form of ax* -f bx + c = 0, where

a, b, c are real, if one root is of the form k -f y7t the other

must be k — ^/h where k and h are real.

EXERCISE 46

Find by inspection the sum and product of the roots of the

following :

i. x2 — 2 x — 35 = 0. 5- x2
-f ax — bx = ab.

2. x2 + 15^ + 36 = 0. 6. cdx2 + d2x = c
2x + cd.

3. 2rJ + 7a;-4 = 0. 7- #2 -2V2a-2= 0.

4- 5a2 -13a = -6.

8. One root of 8 x2 — 2 a? — 15 = is — 1^; find the other.

9. One root of 6X2 + 11 x— 2 = is ^; find the other.

10. One root of 2ar5-8a;2+2a4-12=0 i s 2
;
find the others.

11. One root of m3 — 7 m + 6 = is — 3
;
find the others.

12. If rY and r2 are the roots of x2
-f x -f- 1 = 0, what does

r 2
-+- r2

2

equal ? r? -f- ^3 ?

Form the equations whose roots are :

13- 2, 3. 18. a, 6 a.

14. —
1, 4. 19. a 4- V&, a — V&.

15. i-3. 20. 2+V^3, 2-V^3.
16. -|, —£ 21. 3c-d, — 2c+5f7.

17. 0, -£.



QUADRATIC EQUATIONS 141

22.

23-

V2k-5Vg y^2k±jyVg t

2
'

2

6,-1,0.

Determine by inspection the nature of the roots of the

following :

24. x2 + 7 x + 12 = 0. 30.

25. x2 + 8x = -16. 31.

26. £2 + 2a-l = 0. 32.

27. ^ + 2a + 3 = 0. 33-

28. 2 a;
2 + 7 a=3. 34-

29. 4 a2 -16 = 0. 35-

2a2 = 15z + 18.

x2 - x = 12.

10a2 -z = 2.

23 a? - 6 = 7 a2
.

16 x2 + 24 x + 9 = 0.

5x2 + 3x = -2.

GRAPHS

220. The nature of the roots discussed in § 218 is illustrated

by the use of graphs :
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Fig
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Ex. 1. Graphical representation of a direct proportion.

When a man is running at a constant speed, the distance

which he travels in a given time is directly proportional to

d s
his speed. The algebraic expression of this relation is — = —

,

ord = ms. (See §161.)
d '2 *

Now, if we plot successive values of the distance, d, which correspond

to various speeds, a, in precisely the same

manner in which we plotted successive
, *

values of x and y in §§ 44-48, we obtain

as the graphical picture of the relation

between s and d a straight line passing

through the origin. (See Fig. 1.)

This is the graph of any direct

proportion.
Fig. l.

Ex,

P

.2.

r \
•

i x.

j J

i L—L-Ulpa

Graphical representation of an inverse proportion.

The volume which a given body
of gas occupies when the pressure

to which it is subjected varies has

been found to be inversely propor-

tional to the pressure under which

the gas stands
;
we have seen that

the algebraic statement of this re-

V P>
lation is —- =

tt*

If we plot successive values of V and

P in the manner indicated in §§ 44-48, we

obtain a graph of the form shown in

Fig. 2.

This is the graphical representa-
'

tion of any inverse proportion ; the

curve is called an equilateral hyper-
• bola.

Ex. 3. The path traversed by a
'

falling body projected horizontally.
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When a body is thrown horizontally from the top of a tower,
if it were not for gravity, it would move on in a horizontal

direction indefinitely, traversing exactly the same distance in

each succeeding second.

Hence, if V represents the velocity of projection, the horizontal dis-

tance, If, which it would traverse in any number of seconds, t, would

be given by the equation H— Vt.

On account of gravity, however, the body is pulled downward, and

traverses in this direction in any number of seconds a distance which is

given by the equation 8 = \ gt
2

.

To find the actual path taken by the body, we have only to plot

successive values of II and S, in the manner in which we plotted the

successive values of x and ?/, in §§ 44-48.

Thus, at the end of 1 second the vertical distance Si is given by
#i = i 9 x l2 = \ g ;

at the end of 2 seconds we have, #2 = J g x 22 = \g ;

at the end of 3 seconds, #3 = \ g x 3'2 = § g ;
at the end of 4 seconds,

ft = .
On the other hand, at the end of 1 second

we have H\ = V
\
at the end of 2 seconds,

H2 — 2 V
;

at the end of 3 seconds,

H3=S V; at the end of 4 seconds, H4 =4 V.

If, now, we plot these successive values

of H and S, we obtain the graph shown in

Fig. 3.

This is the path of the body ;
it is a

parabola. (§ 226, Ex. 2.)

Ex. 4. GrapJi of relation between

the temperature and pressure existing

within an air-tight boiler containing

only water and water vapor.

One use of graphs in physics is to express a relation which

is found by experiment to exist between two quantities, which
cannot be represented by any simple algebraic equation.

For example, when the temperature of an air-tight boiler

which contains only water and water vapor is raised, the pres-

sure within the boiler increases also; thus we find by direct

experiment that when the temperature of the boiler. is 0° centi-

grade, the pressure which the vapor exerts will support a

column of mercury 4.6 millimeters high.

Fig. 3,
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700

000

When the temperature is raised to 10°, the mercury column rises to

9.1 millimeters
;
at 30° the column is 31.5 millimeters long, etc.

To obtain a simple and compact picture of the relation between tem-

perature and pressure, we plot a succession of temperatures, e.g. 0°, 10°,

20°, 80°, 40°, 50°, 60°, 70°, 80°, 90°,

100°, in the manner in which we

plotted successive values of x in §§ 44-

48, and then plot the corresponding
values of pressure obtained by experi-

ment in the manner in which we

plotted the ?/'s in §§ 44-48
j
we obtain

the graph shown in Fig. 4.

From this graph we can find at 200"

once the pressure which will exist

within the boiler at any temperature.
For example, if we wish to know

the pressure at 75° centigrade, we
observe where the vertical line which

passes through 75° cuts the curve and then run a horizontal line from this

point to the point of intersection with the line OP.

This point is found to be at 288
;
hence the pressure within the boiler

at 75° centigrade is 288 millimeters.

O 10 20 SO 40 50 00 TU

Fig. 4.

EXERCISE 48

PROBLEMS IN PHYSICS

i. When the force which stretches a spring, a straight wire,

or any elastic body is varied, it is found that the displacement

produced in the body is always directly proportional to the

force which acts upon it
;

i.e. if e^ and d2 represent any two

displacements, and fx and f2 respectively the forces which pro-

duce them, then the algebraic statement of the above law is

If a force of 2 pounds stretches a given wire .01 inch, how
much will a force of 20 pounds stretch the same wire ?

2. If the same force is applied to two wires of the same

length and material, but of different diameters, DY and D2,
then

(i)
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the displacements <lY and d2 are found to be inversely propor-
tional to the squares of the diameters, i.e.

drw ()

If a weight of 100 kilograms stretches a wire .5 millimeter

in diameter through 1 millimeter, how much elongation will

the same weight produce in a wire 1.5 millimeters in diameter?

3. If the same force is applied to two wires of the same

diameter and material, but of different lengths, lx and Z2,
then

it is found that
&J.&
d2 ~k '

Prom (1), (2), and (3) and § 164, it follows that when lengths,

diameters, and forces are all different,

d, / h A2 ()

If a force of 1 ponnd will stretch an iron wire which is

200 centimeters long and .5 millimeter in diameter through
1 millimeter, what force is required to stretch an iron wire

150 centimeters long and 1.25 millimeters in diameter through
.5 millimeter ?

4. When the temperature of a gas is constant, its volume

is found to be inversely proportional to the pressure to which

the gas is subjected, i.e., algebraically stated,

ZU5. (5)
V, P,

w
At the bottom of a lake 30 meters deep, where the pressure

is 4000 grams per square centimeter, a bubble of air has a vol-

ume of 1 cubic centimeter as it escapes from a diver's suit. To

what volume will it have expanded when it reaches the surface

where the atmospheric pressure is about 1000 grams per square

centimeter ?

5. The electrical resistance of a wire varies directly as its

length and inversely as its area. If a copper wire 1 centimeter
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in diameter has a resistance of 1 unit per mile, how many units

of resistance will a copper wire have which is 500 feet long

and 3 millimeters in diameter?

6. The illumination from a source of light varies inversely

as the square of the distance from the source. A book which

is now 10 inches from the source is moved 15 inches farther

away. How much will the light received be reduced ?

7. The period of vibration of a pendulum is found to vary

directly as the square root of its length. If a pendulum 1 meter

long ticks seconds, what will be the period of vibration of a

pendulum 30 centimeters long ?

8. The force with which the earth pulls on any body out-

side of its surface is found to vary inversely as the square of

the distance from its center. If the surface of the earth is

4000 miles from the center, what would a pound weight weigh
15000 miles from the earth ?

9. The number of vibrations made per second by a guitar

string of given diameter and material is inversely proportional
to its length and directly proportional to the square root of

the force with which it is stretched. If a string 3 feet long,

stretched with a force of 20 pounds, vibrates 400 times per

second, find the number of vibrations made by a string 1 foot

long, stretched by a force of 40 pounds.

FACTORING

In Type V, § 103, we learned to transform certain trinomials

into Type I, § 103. By means of the results of § 213, we are

now able to extend this method to expressions not readily fac-

tored by the simpler processes.

222. Factoring of Quadratic Expressions.

A quadratic expression is an expression of the form

ax2
-f bx -f- c.
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We have,

ax2 + bx + c = a(x2 + h~ + -^
V a a)

=«[-
+
i?
+(fj-^i-]

V 2a 2a A 2a 2a /'

by § 103, I.

But by § 213, the roots of ax2 + bx + c = are

__6 Vfr2-4qc and __b_ \/b2 - 4 ac

2 a 2a 2 a 2a

Hence, to factor a quadratic expression place it equal
to zero, and solve the equation thus formed.
Then the required factors are the coefficient of a?2 in

the given expression, oc minus the first root, and x minus
the second.

Sometimes the expression may be written as the difference

of two squares and the method of § 103, V, used.

Ex. Factor a4 + 1.

x* + 1 = (x* + 2 x2 + 1)
- 2 x2

= (x
2 + l)

2 - <W2) 2

= (x
2 + xV2 + l)(x

2 - xV2 + 1).

EXERCISE 49
Factor the following :

i. a2 + 11 x + 24. 8. 16 + 18 b-9 b\

2. m2-m- 210. 9- 2 + 5p-25p2
.

3 . 3a2 -10a-8. 10. 49a2 + 28a-ll.

4. 2 a2 -11 a + 15. 11. a 4 + 4.

5. 28 -13 a -6 or*.
.

12. a4 +y.
6. 8c2+ 8c-6. 13. 9tf4 + 22d* + 25.

7. 9a2 -6a-8. 14. 16 a4 - 78 a2
6
2 + 81 b\
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15. 2 x2 — 6 xy + 3 y
2 + 5 x — 7 y + 2.

16. x2
--xy — 2 y

2 — 5 # + ?/ + 6.

17. a2 + 2ak-15&2 -3ac + 176c-4c2
.

18. 3a2 -23ab + Ub2 + a + 31b-10.

19. 6z2 + 7a?/ + 2?/
2

-26a;-162/ + 24.

20. 10a2 + ^-24?/2 + 26;c + 542/-12.

Solve the following equations :

21. or
5 + 27 = 0. 29. (a

2

-4)(3a
2

+a;-10)= 0.

22. a4 -20^ + 64 = 0.
30. a;

7 -729 a? = 0.

23. tf
4 + 2*2 + 9 = 0.

3I X*_ 9X2 + U==0 .

24. x4 + 4a;2 + 9 = 0.

32. 9 a*
4 — 2a* + 4 = 0.

25. (#+2)(3a
2

+4a+5)=0.
26. *«-64 = 0.

33 ' ^- 16 = °«

27. 2 or* -3 a2 + 4 a- 6 = 0. 34- 2^+6^-18^-54= 0.

28. ^-2^ + 5^ = 0. 35. (4a?-l)(a? + a>+l)= 0..

SIMULTANEOUS QUADRATIC EQUATIONS

223. In solving simultaneous quadratic equations involving

two unknown numbers it is necessary to eliminate one of the

unknowns as was done in simultaneous linear equations.

The elimination of an unknown number from two equations
of the second degree will often produce an equation of the

fourth degree with one unknown number which cannot be

solved by the ordinary methods. The following general direc-

tions will lead to the solution of many types.

224. Case I. When each equation is in the form

ax2 + by
2 = c.

In this case, either x2 or y
2 can be eliminated by addition

or subtraction (§ 42, II, III).

Case II. When each equation is of the second degree, and

homogeneous; that is, when each term involving the unknown

numbers is of the second degree with respect to them (§ 23).
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The equations may then be solved as follows :

Ex. Solve the equations J
' ^'

I
x2 + 2/

2 = 29. (2)

Dividing (1) by (2),
x2 ~^ xV = A r 29 z2-58 xy = 5 a? + 5 i/

2
.

a? + ?/
2 29

Then, 5 y
2 + 58 a;y

- 24 z2 = 0, or (5 y - 2 a:) (y + 12 *) = 0.

2 a*

Placing 5 y — 2 x = 0, ^ =^ ; substituting in (1),
5

z2 _ »£L _
5? or 34 = 25.

5

Then, a; = ± 5, and y =— = ± 2.
5

Case III. When the given equations are symmetrical with

respect to x and y ; that is, when x and y can be interchanged

without changing the equation.

Equations of this kind may be solved by combining them in

such a way as to obtain the values of x + y and x — y.

\x + y = 2. (1)
i. Solve the equations {

\ xy=-15. (2)

Squaring (1), x2 + 2 xy + y
2 = 4.

Multiplying (2) by 4, \xy =— 60.

Subtracting, x2 — 2 xy -f y
2 == 64.

Extracting square roots, x — y = ± 8. (3)

Adding (1) and (3), 2 as = 2 ± 8 = 10 or - 6.

Whence, x = 5 or — 3.

Subtracting (3) from (1), 2 ?/ = 2 T 8 = - 6 or 10.

Whence, y = — 3 or 5.

The solution is x = 5, y = — 3
; or, x = — 3, y = 5.

The above method offers the most desirable form of solution

and should be employed when possible.

If one equation is of the second degree, the other of the

first degree, and they are not symmetrical, Case IV should be

used.
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Case IV. When one equation is of the second degree and the

other of the first.

Equations of this kind may be solved by finding one of the

unknown numbers in terms of the other from the first degree

equation, and substituting this value in the other equation.

r, a i ^ \2x
2 -xy = 6y. (1)Ex. Solve the equations \

w
J

x + 2y = l. (2)

From (2), 2 y 5= 7 - x, or y = I—£.
(*)

Substituting in (1), 2x2 -x( 7-^-\ = qH-^JSV

Clearing of fractions, 4 x2 — 7 x -f x2= 42— 6 x, or 5 x2—x=42.

Solving, x = 3 or -— .

5

Substituting in (3) , y = 1=1? or 1±J£ = 2 or — .

.....
2 2 10

The solution is x = 3, y = 2
;
or x = — ^, y = fg.

Certain examples where one equation is of the third degree and the

other of the first may be solved by the method of Case IV.

225. Special Methods for the Solution of Simultaneous Equa-

tions of Higher Degree.

No general rules can be given for examples which do not

come under the cases just considered; various artifices are

employed, familiarity with which can only be gained by

experience.

v-y=i9. (i)
i. Solve the equations

\x2y-xy2 =6. (2)

Multiply (2) by 3, 3 x2y - 3 xy
2 = 18. (3)

Subtract (3) from (1), x3 - Sx2
y + Sxy2 - y

3 = 1.

Extracting cube roots, x — y = l. (4)

Dividing (2) by (4), xy = 6. ~ (5)

Solving equations (4) and (5) by the method of § 224, Case III, we
find % ss 3, y = 2

j or, x = — 2, y =— 3.
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. ( x8
-\- y

8 = 9 xy.
2. Solve the equations 1^

I a; + = 6.

Putting x = u -f v and y = u — v,

(u + v)
3 + (w-v) 3 = 9(w4-v)(w-'y), or, 2 w8 + 6 uv2 = 9(u

2 - v2); (1)

and (u -f a) + (m — «?)
= 6, 2 w = 6, or w = 3.

Putting w = 3 in (1), 54 + 18 v2 = 9 (9
-

t>
2
).

Whence, v2 = 1, or v = ± 1.

Therefore, x = w + v =3 ±1=4 or 2
;

and y = u — v = 3=Fl=2or4.

The solution is x = 4, ?/
= 2

; or, x = 2, y = 4.

The artifice of substituting u + v and tt — v for £ and ?/ is advantageous
in any case where the given equations are symmetrical (§ 224, Case III)

with respect to x and y. See also Ex. 4.

3. Solve the equations
x* + if + 2x + 2y = 23. (1)

xy = 6. (2)

Multiplying (2) by 2, 2xy= 12. (3)

Add (1) and (3), x2 + 2xy + y
2 + 2x + 2y = 35.

Or, (x + ?/)
2 + 2(x + ?/)=35.

Completing the square, (x + y)
2 + 2 (x + y) +1 = 36.

Then, (x + y) + 1 = ± 6
;
and x + y = 5 or — 7. (4)

Squaring (4), x2 + 2 x^ + y
2 = 25 or 49.

Multiplying (2) by 4, 4 xy = 24.

Subtracting, x2 — 2 xy + ?/
2 = 1 or 25.

Whence, x — y = ± 1 or ± 5. (5)

Adding (4) and (5), 2x = 5±l, or-7±6.

Whence, x = 3, 2,
-

1, or — 6.

Subtracting (5) from (4), 2 y = 5 T 1
,.
or - 7 =F 5.

Whence, y = 2, 3,
-

0, or - 1.

The solution isx = 3, ?/
= 2

;
x = 2, y = 3

;
x =— 1, ?/

= — (J
;
or x = — 6,
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f xA + y* = 97.

4. Solve the equations -j4 H
la? +2/ =-1.

Putting x = u + v and y = u — v,

(u + t>)
4 + (fS

-
*)* = 97, or 2 «* + 12 m¥ + 2 «* = 97, (1)

and (w + a) + (w
—

a) = — 1, 2 w = —
1, or w = — J.

Substituting value of U in (1), J + 3 v2 + 2 v4 = 97.

Solving this,
25 _ 31

or
;
and v =± - or ±

V-31
2

Then,x = n+^-l±g, or -1^^-^1=2,-3, or
~ 1±V - :il

:

2 2' 2 2
'

2

and y = ^-^-l T g r _l V-31^_ 3 r
-l^V33T

2 2 2 2 2

The solution is x = 2, ?/
= — 3; x=-3, ?/

= 2
;
x- —l + —~,

_1_V-31 _ -l-V-31
B -i+V-31w =

;
or x = , y = !

y
2 . 2 2

MISCELLANEOUS EXAMPLES

EXERCISE 50

Solve the following equations and verify each result :

3-

(2xy + x = — 36.

1 xy — 3 y = — 5.
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10.

i5-

i8.

19.

22.

23-

k

,2 3 b

x a

(x4 + y
4 = 17.

{ x — y =0.

(±d + k-3dk = -6.

\d-5k + 2dk = 10.

(x2 + ±xy = 13.

[2xy+ 9y
2 =87.

.

17.

ALGEBRA
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+ 4xy-3y = 42. . ( xA + tftf + y
A = 481.

' 2 y
2 — xy + 5 y = — 10. [ a?

2 —
#?/ -f y

2 = 37.

16 aY- 104 xy=-105.
J J

9 aj
2-13«y-3aj= -123.

| a; _
2/
= _2.

33 '

1b?/4-42/
2 + 22/ = 125.

* Divide the first equation by the second.

EXERCISE 51

i. Find two numbers whose product is 112 and whose dif-

ference is 6.

2. A rectangular field has a perimeter of 104 rods and an

area of 4 acres. Find its dimensions.

3. The square of the sum of two numbers minus four times

their product equals 49, and the difference of their squares

equals 175. What are the numbers ?

4. The sum of the cubes of two numbers is 855
;
and if the

sum of the numbers be multiplied by their product, the result

will be 840. What are the numbers ?

5. There is a number consisting of two digits, the sum of

whose squares is 80
;
and if the sum of the digits be multiplied

by 4, the number will be expressed with its digits reversed.

What is the number ?

6. A man loaned a sum of money at 6 % for a given time

and received $240 interest; if he had loaned the same sum for

two years longer at the rate represented by the first number

of years, he would have received $40 more than at first. Find

the time and the amount loaned.

7. If 5 be added to the denominator and subtracted from

the numerator of a certain fraction, it will be expressed by its

reciprocal ;
and the difference of the squares of numerator and

denominator equals 65. What is the fraction ?

8. A number consists of three digits, the second of which

is twice the first. The sum of the squares of the digits equals
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89, and if 99 be subtracted from the number, the digits will be

reversed. What is the number ?

g. A man buys two pieces of cloth, each containing as many-

yards as its price per yard in cents, and he pays $ 41 for the

whole amount. If the prices for the two pieces of cloth had

been interchanged, his bill would have been $1 less. How

many yards of each did he buy and what was the price per

yard ?

io. Two squares have together an area of 613 square rods.

If the side of the first square were decreased by 6, and that of

the second increased by 1, their perimeters would be in the

ratio of 2 to 3. Find the side of each square.

ii. There are two numbers whose sum decreased by the

square root of their product is 13
;
and the sum of their squares

increased by their product is 481. Find the numbers.

12. Two boys count their pennies. They find that the

product of the numbers representing them is 84, and that the

square of their sum decreased by twice their difference is 351.

How many did each have ?

13. There are two numbers whose difference is 819, and

the difference of their cube roots is 3. What are the

numbers ?

14. There is a difference of one hour's time in two trains

which go from A to B, the rate of the first train being 5 miles

an hour more than that of the second train. If the speed of

each train were increased 2 miles per hour, the difference

in time from A to B would be decreased 7 minutes 80

seconds. Find the distance from A to B and the rate of

each train.

15. The difference of the perimeters of a square and a circle

is 5.752 feet and the circle contains 81.86 square feet more

than the square. Find the radius of the circle and the side

of the square.
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16. In an isosceles triangle the product of the base and one

leg is 108, and the difference between the squares of the base

and leg is 52. Find the altitude of the triangle.

17. The perimeter of a rectangle is 46 inches. If its length

be increased 3 inches, its area will be 153 square inches. Find

its dimensions. Is there more than one such rectangle ? Ex-

plain.

18. If the sum of the denominator and numerator of a cer-

tain fraction be divided by their difference, the quotient is 9.

But if the product of the numerator and denominator be di-

vided by their sum, the quotient is 2 with a remainder of 2.

Find the fraction. What principle of proportion is illustrated

in this problem ? If this principle is applied, are simultaneous

equations necessary ?

226. It was noted in §§ 224, 225, that two second degree

equations had four solutions, or pairs of values for x and y, that

a second degree and a first degree equation had two solutions,

that if imaginary roots entered they were always in pairs.

The geometric explanation for this is readily seen if the

equations are plotted.

Ex. 1. Consider the equation x2
-f- y

2 = 25.

This means that, for any point on the

graph, the square of the abscissa, plus the

square of the ordinate, equals 25.

But the square of the abscissa of any

point, plus the square of the ordinate, equals

the square of the distance of the point from

the origin ;
for the distance is the hypotenuse

of a right triangle, whose other two sides are

the abscissa and ordinate.

Then the square of the distance from of

any point on the graph is 25
; or, the distance

from of any point on the graph is 5.

Thus, the graph is a circle of radius 5, having its center at 0.

(The graph of any equation of the form x2 -f y
2 = a is a circle.)
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Ex. 2. Consider the equation y
2 = 4 x + 4

Ha;-*), */
2 = 4, or y =±2.. (^, i?)

If x = 1, y
2 = 8, or y = ± 2 V2. (C, Z>)

If x=- 1, y = 0, Etc. (E)

The graph extends ^definitely to the right of

77'.

If x is negative and < —
1, y

2 is negative, and

therefore y imaginary; then, no part of the

graph lies to the left of E.

(The graph of Ex. 2 is a parabola ; as also is

the graph of any equation of the form y'
2 = ax or y

2 = ax + b.)

Ex. 3. Consider the equation x2
-+- 4 y

2 = 4.

In this case it is convenient to first

locate the points where the graph inter-

sects the axes.

If y = 0, x2 = 4, or x = ± 2. (.4, 4')

If x = 0, 4 y
2 = 4, or y = ± 1. (J3, i?')

Putting x — ± 1
,

4 ?/
2 = 3, ?/

2 =
J, or

V3
(C, A C, 2>')
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The graph has two branches BAC and B'A'C, each of which extends

to an indefinitely great distance from O.

(The graph of Ex. 4 is a hyperbola; as also is the graph of any

equation of the form ax2 — by
2 = c, or xy = a.)

Ex. 1. Consider the equations

227. Graphical Representation of Solutions of Simultaneous

Quadratic Equations.

\y
2 = ±x,

[3x-y = 5.

The grapjh of y
2 = 4 x is the parabola AOB.

The graph of 3 x — y = 5 is the straight line AB,
intersecting the parabola at the points A and B,

respectively.

To find the coordinates of A and J5, we proceed
as in § 48

;
that is, we solve the given equations.

The solution is x = 1, y = — 2
; or, x = -^

5
,

y = ^ (§224, IV).
It may be verified in the figure that these are

the coordinates of A and 2?, respectively.

Hence, if any two graphs intersect, the coordinates of any point

of intersection form a solution of the set of equations represented

by the graphs.

—Y- j r*C-

S i±j ~3.

III IstlUl^IZ"

:z:
=
Ei^s;::E:::

—
-Y'-t ^s:-

Ex. 2. Consider the equations
x2 + y

2 = 17,

xy = 4:.

The graph of x2
-f y

2 = 17 is the circle

AD, whose centre is at O, and radius Vl7.

The graph of xy = 4 is a hyperbola,

having its branches in the angles XOY
and J'07', respectively, and intersecting

the circle at the points A and B in angle

XOY, and at the points C and D in

angle X'OY'.
The solution of the given equation is

X = 4, ?/
= 1

;
se = 1,^ = 4;

x — — 1, y =— 4
;
and # =— 4, y = — 1.

It may be verified in the figure that these are the coordinates of A, 2?,

C, and D, respectively.
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2.

x2 + 4 y
2 = 4.

a — y = l.
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3. Reduce 0* +O 2 -
(e

x -e~ x

)

2

tQ the form
/_2_

(e
x + e

_x
)
2

\e
x + <r

4. Reduce = to the form =

5. Reduce (
x" + x

)'
"~ 4

to the form
2m 2m

1+-
* 1

6. Reduce
a? -f- V#2 — a2

—= to the fonu -\/
+

•

x2 — a2 x^x — a

a2

7. Reduce ^±^±jD± +f^>T* to unity.
a; + V#2

-\-y
2 x + V#2 + y

2

ax

(a2 __ /p2\f j[

8. Reduce v y to the form — >

a If a V
1 Va2-^2

9. 5 = Vr+X2
. If JT= V2a-?/~^ find s =JS

2/
v y

2

10. Reduce — — to the form —
,

x3 1
11. Reduce _ —- to the form _

Xs — x4 — 6 25 1-

4ar»

1 - 2 x*\
2

12. Reduce V2 a# — x2 to the form

a (x
—

a)
2
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13. 2 tan x + (tan xf — 3 =
;
find tan x.

14. 2 cos x H = 3
;
find cos x.

cos a;

15.
— h 2 cot x = -VI + cot2 #

;
find cot x.

cot a? 2

16. Eeduce <l + x)«
• x^ - n(l + x)^. *T

to »*^_.
(l + a;)

2"
(l + a)»

+1

17. £ = -^(12 + ^-8. Evaluate # when x = 15.

3V3

4: XS

X ^]-2x-2x^/l-x4

vJ VI — X*/
18. Eeduce to the form

af

4ft+-
1

2+

aA Vl-tf

2^-1

19. Eeduce — to the form — .

2x- 1+2 Ve2 — # — 1 -y/x
2—x— 1

'

a?-2\* 3
(x-2X-

* / _2_
va;+ 2y

+
4U + 2y U + 2V . - a,-

2-
20. Eeduce 4—!—'- :——i—1—:—J— to the form -=—7

-

2\* x ~^

21. Eeduce

(
x-2
U + 2

to the form

e
a + e

a

2a

2x _2x

a(e
a -e"~ a

)

4
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1
/-V2ry — f

22. Reduce y -\ r-J
-j-

J— to the form —7/.— r

„,2

23. Reduce # —

24. Reduce

/1 +W*
V y

2

y y

Ap
2

to 3 # + 2j9 when y
2 = 4p#.

2/

3

y-«
b2x

a~y b4
. x2

y
2

.

t° 2-^ when -^+ t== 1.

IX. SERIES

ARITHMETIC PROGRESSION

229. An Arithmetic Progression is a series of terms in which

each term, after the first, is obtained by adding to the preced-

ing term a constant number called the Common Difference.

Thus, 1, 3, 5, 7, 9, 11, ••• is an arithmetic progression in

which the common difference is 2.

Again, 12, 9, 6, 3, 0,
—

3,
••• is an arithmetic progression in

which the common difference is — 3.

An Arithmetic Progression is also called an Arithmetic Series.

230. Given the first term, a, the common difference, d, and the

number of terms, n, to find the last term, I.

The progression is a, a + d, a -f- 2 d, a -j- 3 d, •••.

We observe that the coefficient of d in any term is less by 1

than the number of the term.

Then, in the nth term the coefficient of d will be n — 1.

That is, 1 = a+ (n — l)c?. (i)
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231. Given the first term, a, the last term, I, and the number

of terms, n, to find the sum of the terms, 8.

^ = a+(a + d)+(a + 2d) + ...+(/-d) + /.

Writing the terms in reverse order,

S = l + (l-d) + (l-2d)+ ... + (a + d) + a.

Adding these equations term by term,

2 5«(a + + (a + + (a + 0+»-->(a + + («+0-

Therefore, 2 8 = n(a + T),
and S m £ (a + I). (II)

m

232. Substituting in (II) the value of I from (I), we have

£**?[2a+-<»-- l)<q.
J*

Ex. In the progression 8, 5, 2,
—

1,
—

4, •••, to 27 terms,

find the last term and the sum.

Here, a = 8, d = 5 - 8 m -
3, n = 27.

Substitute in (I), I = 8 +(27 - 1)(- 3) = 8 - 78 = - 70.

Substitute in (II), S= V(8 - 70)
= 27(~ 31 )

= - 837 -

The common difference may be found by subtracting the first term

from the second, or any term from the next following term.

EXERCISE 54

In each of the following find the last term and then the sum :

i. 2, 5, 8, ..-, to 17 terms.

2. 3, 9, 15, «.., to 12 terms.

3. 7, 5, 3, «.., to 24 terms.

4. 1, \, 0, ..«, to 32 terms.

5. -\, - T\, i, ..-, to 9 terms.

6. a, a — 3 b, a — ()b, •••, to Mf terms.

7. 2 x + 5 y, x 4- 4 y, 3 ?/,
•

•-, to 13 terms.
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2c—5dc — 4:dd — c on ^,.™
8.

,

—-—
,
——-

, •••, to 20 terms.
3 bo

3 1 2
9- *-> TK~> —T-> "^ t0 19 terms '

1 T P
I0 -

7Vf> £R> o£> "''i t0 47 terms '

2o 50 25

233. The j#rs£ term, common difference, number of terms, last

term, and sum of the terms are called the elements of the

progression.

If any three of the five elements of an arithmetic progres-

sion are given, the other two may be found by substituting the

known values in the fundamental formulae (I) and (II), and

solving the resulting equations.

i . Given a = —
f, w = 20, S = —

f ;
find d and I.

Substituting the given values in (II),

-
| = 10 (- | + I) or - i =- | +1 ; then, I = J

-
J = |.

Substituting the values of a, w, and I in (I), f =— J + 19 <Z.

Whence, 19 J = f + f = ^, and d = J.

2. Given ^ = -3, Z= — 39, £ = -264; find a and w.

Substituting in (I),
— 39 = a + (n

-
1) (- 3), ora = 3w- 42. (1)

Substituting the values of Z, S, and a in (II),

- 264 = -(3 n - 42 - 39), or - 528 = 3 n* - 81 n, or n* - 27 n -f 176 = 0.

wu 27 ± V729 - 704 27 ± 5 wtAi,f1Whence, n =—== =—*— = 16 or 11.
2 2

Substituting in (1), a = 48 — 42 or 33 - 42 = 6 or — 9.

The solution is a = 6, n = 16
; or, a =— 9, n = li.

The significance of the two answers is as follows:

If a = 6 and n = 16, the progression is 6, 3, 0,-3, -
6,
—

9,
—

12,
-

15,
-

18,
- 21, - 24,

-
27,

-
30,

-
33,

-
36, - 39.

If a = — 9 and n = 11
,
the progression is

_
9,
-

12,
-

15,
-

18,
- 21, - 24,

-
27, - 30,

-
33,

-
36, - 39.

In each of these the sum is — 264.
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'

3. Given a = \, d = — y
1

^, S = — § ;
find I and n.

Substituting in (I), I=
|+ (n - 1)YJ -L\ =s

^L«. ( 1)

Substituting the values of a, #, and I in (II),

2 2\3 12 y v 12 y

,,rl 9±V81+144 9 ±15 10 o
Whence, 71=—± -J- = —±— = 12 or — 3.

2 2

The value w =— 3 must be rejected, for the number of terms in a pro-

gression must be a positive integer.

Substituting n = 12 in (1), I = 6
rf^==-^X.

A negative or fractional value of w must be rejected, together with all

other values dependent on it.

EXERCISE 55

i. Given a =*5, d = 2, I = 65,-, find n and S.

2. Given cZ = — 3, n = 42, I = — 119
;
find a and £.

3. Given d = f ,
ri = 16, # = ^^; find a and Z.

4. Given 71 = 19, Z = """"*

, S = ;
find a and d.

7 14

5. Given S = - 540, a = - 23, n = 48
;
find Z and d.

6. Given d = — 4, Z = — ——
, # =— ;

find a and n.
64

'

32
'

7. Given d — a — 1, a = 2 a + 5, # = 44 a -f 12 ;
find 7 and n.

8. Given a = — 8 a, I = 8 a — 16
Z>,
# = — 136 6

;
find n and d.

9. Given a = .4, I = 34.6, n = 20
;
find cZ and 5.

10. Given S = 18.15, d = .02, a = .23; find Z and n.

1 1 . Given S= ^——
,
d = —-^

,
w = 15

;
find a and I.

12. Given n = 26, d =
,

Z =
~

;
find # and a.

8 8
'
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234. From (I) and (II), general formulae for the solution of

examples like the above may be readily derived.

Ex. Given a, d, and S\ derive the formula for n.

By §232, 2^=«[2a + (»-l)d], or dn2 + (2a-d)n = 2S.

This is a quadratic in w, and may be solved by the method of § 213;

multiplying by 4 d, and adding (2 a — d)
2 to both members,

4 <Pn2 + 4 d(2 a-d)n + (2a-d) 2 =:$dS + (2a- d)
2

.

Extracting square roots, 2dn + 2 a — d=± V8 dS + (2 a — d)
2

.

Whence, n = d - 2 a ±VSdS+^J^2
.

2d

EXERCISE 56

i. Given a, I,
and n\ derive the formula for d.

2. Given a, n, and S
;
derive the formulae for d and I.

3. Given d, n, and S
;
derive the formulae for a and Z.

4. Given a, d, and Z
;
derive the formulae for n and S.

5. Given d, I,
and 71

;
derive the formulae for a and S.

6. Given Z, n, and $
;
derive the formulae for a and d.

7. Given a, cZ, and S ;
derive the formulae for Z.

8. Given a, Z, and # ;
derive the formulae for d and n.

9. Given cZ, Z, and # ;
derive the formulae for a and n.

235. Arithmetic Means.

We define inserting m arithmetic means between two given

numbers, a and b, as finding an arithmetic progression of

?/i + 2 terms, whose first and last terms are a and b.

Ex. Insert 5 arithmetic means between 3 and — 5.

We find an arithmetic progression of 7 terms, in which a = 3, and

I = — 5
; substituting n = 7, a = 3, and Z = — 5 in (I),

- 5 = 3 + 6 d, or d = -
§ .

The progression is 3, ) , J,
—

1,
—

J,
— y, — 5.
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236. Let x denote the arithmetical mean between a and b.

Then, x— a = b — x, or 2 x — a -f- b.

Whence, x = ^-~- -

That- is, the arithmetic mean between two numbers equals one-

half their sum.
EXERCISE 57

i. Insert 6 arithmetic means between 3 and 24.

2. Insert 12 arithmetic means between — 5 and 73.

3. Insert 20 arithmetic means between
|-
and —

f-f.

4. Insert 13 arithmetic means between — -*- and — -2
g
3
-.

5. Find the arithmetic mean between a2 — 2 a — 9 and

a2_6a + l.

6. If n — 2 arithmetic means are inserted between a and I,

find the 4th term.

GEOMETRIC PROGRESSION

237. A Geometric Progression is a series of terms in which

each term, after the first, is obtained by multiplying the pre-

ceding term by a constant number called the Ratio.

Thus, 2, 6, 18, 54, 162, ••• is a geometric progression in

which the ratio is 3.

9, 3, 1, i, |-,
• • • is a geometric progression in which the ratio is \.

—
3, 6,

—
12, 24,

—
48, • • • is a geometric progression in

which the ratio is — 2.

A Geometric Progression is also called a Geometric Series.

238. Given the JJrsf term, <i, the ratio, r, and the number of

terms, n, to find th€ lax/ term, I.

The progression is a, ar, ar2

,
a?*

3
,

•••.

We observe that the exponent of r in any term is less by 1

than the number of the term.

Then, in the nth term the exponent of r will be n — 1.

That is, l = arn-K (I)
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239. Given the first term, a, the last term, I,
and the ratio, r, to

find the sum of the terms, 8.

S = a-\-ar + ar2
-\-

••• + ar n~*
-\-ar

n - 2 + ai"-\ (1)

Multiplying each term by r,

rjS = ar = ar2 + ar*+ ... + ar1l~2 + ar"-1 + arn . (2)

Subtracting (1) from (2), rS — S = arn — a, or S = ~~i~'
r — 1

But by (I), § 238, rl=arn
.

Therefore, JS= 7^^ -
(II)

r — 1

The^rs^ Jerm, ratio, number of terms, last term, and sum of the terms

are called the elements of the progression.

240. Examples.

i. In the progression 3, 1, \, •••, to 7 terms, find the last

term and the sum.

Here, = 3, r = \, n = 7.

Substituting in (I), l = s(-Y = ~ =— .° V *
\S) 35 243

Substituting in (II), S -

i-1 -1 -I ^3

The ratio may be found by dividing the second term by the first, or

any term by the next preceding term.

2. In the progression
—

2, 6, —18, •••, to 8 terms, find the

last term and the sum.

Here, a = —
2, r = = — 3, n = 8, therefore,

I = - 2(- 3)' = -2x(- 2187) = 4374.

# -
- 3 x 4374 - (- 2) _ - 13122 + 2 = 328Q— 3 — X — 4



170 ALGEBRA

EXERCISE 58

Find the last term and sum of the following :

i. 1, 3, 9,
••• to 8 terms.

2.
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2. Given a = 3, r = - £, # = VsV" ;
find w and Z.

Substituting in (II),
^ = -**~ 8 = L±i.° l ; '

729 -}-l 4

Whence, 1 + 9 = tfiff
-

t or, I = V# - 9 =- 7fc.

Substituting the values of a, r, and I in (I),

- th = H- i)""
1

; or, (- J)"-
1 =- nVy.

Whence, by inspection, n — 1=7, orn = 8.

From (I) and (II) general formulae may be derived for the solution of

cases like the above.

If the given elements are n, Z, and S, equations for a and r may be

found, but there are no definite formulas for their values.

The same is the case when the given elements are a, n, and S.

The general formulae for n involve logarithms ;
these cases are discussed

in § 110.

EXERCISE 59

i. Given r = 2, n = 12, S = 4095
;
find a and I

2. Given a = 2, r = — 3, Z = 1458
;
find n and S.

3. Given Z = — -g^, a = — if,
n = 10

;
find r and S.

4. Given a» f, Ja 3584, # = **£** ;
find r and rc.

5. Given r = i, w = 5, Z = T^ ;
find a and S.

6. Given ^ = -A||-i^ a = -64, r=i; find w and I

7. Given a, Z,
and #

;
derive the formula for r.

8. Given r, Z, and n
;
derive the formulae for a and S.

9. Given a, n, and Z
;
derive the formulae for r and S.

10. Given #, n, and r
;
derive the formulae for a and L

242. Sum of a Geometric Progression to Infinity.

The limit (§ 125) to which the sum of the terms of a decreas-

ing geometric progression approaches, when the number of
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terms is indefinitely increased, is called the sum of the series to

infinity.

Formula (II), § 239, may be written

a— rl

1 — r

It is evident that, by sufficiently continuing a decreasing

geometric progression, the absolute value of the last term may
be made less than any assigned number, however small.

Hence, when the number of terms is indefinitely increased,

Z, and therefore rl, approaches the limit 0.

Then, the fraction
a ~~ r

approaches the limit —^— •

Therefore, the sum of a decreasing geometric progression to

infinity is given by the formula

Sfatr^z* (HI)
1 — r

Ex. Find the sum of the series 4,
—

f,
-1
/,

... to infinity.

o
Here a = 4, r =

3

Substituting in (III), S= 4 = — .V J

1+f 5

To find the value of a repeating decimal.

This is a case of finding the sum of a decreasing geometric
series to infinity, and may be solved by formula (III).

Ex. Findthe value of .85151-...

We have, .85151 ••• = .8 + .051 -f .00051 + ....

The terms after the first constitute a decreasing geometric progression
in which a = .051, and r — .01.

Substituting in (III) ,
S = ,051 = '— =— =— •

1-.01 .99 990 330

Then the value of the given decimal is r
8
^ + ^, or |f J.
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EXERCISE 60

Find the sum to infinity of the following :

T 9 2 2 . . . 4 _ 8 _ 1 R _ 3 2
.

2. 1, -i,i,-. 5- -.3, .12, -.048, -..

3- fj I? TV* '"' *i
~~

** & ***•

Find the values of the following:

7- .4777.-.. 8. .8181.-.. 9- .5243243-... io. .207575-...

243. Geometric Means.

We define inserting m geometric means between two numbers,

a and b, as finding a geometric progression of m + 2 terms,

whose first and last terms are a and b.

Ex. Insert 5 geometric means between 2 and ^ff.

We find a geometric progression of 7 terms, in which a = 2, and

I = iff ; substituting n = 7, a = 2, and Z = }|| in (I),

i|8 a* ^ r* ;
whence r6 = 7%%, and r =± f

The result is 2, ± f, |, ± if, |f, ± ^, fff.

244. Let x denote the geometric between a and b.

Then. - = -, or x2 = ab.
a x

Whence, x = ^Jab.

That is, the geometric mean between two 7i'umbers is equal to

the square root of their product.

245. Problems.

i. The sixth term of an arithmetic progression is f, and the

fifteenth term is -L6-. Find the first term.

Ry § 230, the sixth term is a + 5 d, and the fifteenth term a -f 14 d .

, , «'". f a+ 5d = J. . (1)
Then, by the conditions, \

la + Ud=\*-. r
(2)

Subtracting (1) from (2), 9 d = }j whence, d = \.

Substituting in (1), a + § = |j whence, a = -f.
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2. Find four numbers in arithmetic progression such that

the product of the first and fourth shall be 45, and the product
of the second and third 77.

Let the numbers be x — 3 y, x — y, x + y, and x -f 3 y.

x2 -9y2 = 45.
Then by the conditions, I

x<* 9 y2 ~ 45,

I x2 - w2 = 77.

Solving these equations, x = 9, y
— ± 2

; or, x = — 9, y = ± 2 (§ 224)

Then the numbers are 3, 7, 11, 16
; or, —3, —

7,
—

11,
— 15. •

In problems like the above, it is convenient to represent the unknown
numbers by symmetrical expressions.

Thus, if five numbers had been required, we should have represented

them by x — 2 ?/, x — y, x, x + y, and x + 2 y.

3. Find 3 numbers in geometric progression such that their

sum shall be 14, and the sum of their squares 84.

Let the numbers be represented by a, ar, and af2 .

a + qr + ar2 = 14. (1)

a2 + a2r2 +a2ri = te. (2)

Divide (2) by (1), a - ar + ar2 = 6. , (3)

Then, by the conditions,

2
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4. The sum of the first ten terms of an A. P. is to the sum

of the first seven terms as 29 to 14. Find the ratio of the

common difference to the first term.

5. There are four numbers, such that the first three form a

G. P., the last
thr^ee

form an A. P. The sum of the first three

is 73, of the last three 192. The difference between the second

and fourth is 112. Find the numbers.

6. How many arithmetic means are inserted between — f
and f ,

when their sum is 2
^- ?

7. Find four numbers in A. P., such that the sum of the

first and second shall be — 1, and the product of the second

and fourth 24.

8. A traveller sets out from a certain place, and goes 7

miles the first hour, 1\ the second hour, 8 the third hour, and

so on. After he has been gone 5 hours, another sets out and

travels 16J miles an hour. How many hours after the first

starts are the travellers together ?

9. If a person saves $ 120 each year, and puts the sum at

simple interest at 3\°/o at the end of each year, to how much
will his property amount at the end of 18 years ?

10. A ball is dropped from a window 32 feet above the

pavement. Assuming the ball to be perfectly elastic and that

on each rebound it rises to within \ of its former height, how
far does it travel before coming to rest ?

11. Two men travel from P to Q, leaving P at the same

time. The distance from P to Q is 63 miles. The first

travels 1 mile the first hour, 2 miles the second hour, 4 miles

the third hour, and so on. The second travels 11 miles the

first hour, 10| miles the second hour, 10 1 miles the third

hour, and so on. Which is first to arrive at Q ?

12. Find the geometric mean between .0729 and .0529.

13. Find the geometric mean between — and
2.2o o76.
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14. Find the geometric mean between —TjW and ?L.

xy-y2

xy

15. Find the geometric mean between a2 — 4 a + 4 and

4 a2 + 4 a + 1.

16. The product of the first five terms of a G. P. is 243.

Find the third term.

17. The digits of a number of three figures are in geometric

progression. If units' and tens' digits are interchanged, the

number formed exceeds the original number by 36. The sum
of the digits is 14. Find the number.

18. A man travels 445*- miles. He travels 10 miles the first

day, and increases his speed one-half mile in each succeeding

day. How many days does the journey require ?

19. An A. P. has 19 terms such that the sum of the three

middle terms is 3, and the sum of the first term and the last

two terms is — 13. Find the series.

20. Find the number of arithmetic means between 1 and 69,

such that the ratio of the last mean to the first mean is 13.

21. Find an A. P. of 17 terms such that the sum of the first

three terms is to the last term as 3 to 13, the first term being

unity.

22. The sum of three successive terms of a geometric pro-

gression is 39 and the sum of their squares is 819. Find the

series.

23. The sum of how many terms of the series 1, 3, 9 •••, is

3280 ?

24. Show that in any G. P., if each term is subtracted from

the succeeding term, the differences form a G. P.

25. Find three numbers in A. P., such that the square of the

first added to the product of the other two gives 16, and the

square of the second added to the product of the other two

gives 14.
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X. INFINITE SERIES

246. Infinite Series (§ 178) may be developed by Division,

or by Evolution.

Let it be required, for example, to divide 1 by 1 — x.

1 — se)l(l + x + x2 +
1-x

X

x-x2

. = l+x + x2 + x? + -•.Then,

Again, let it be required to find the square root of 1 + #•

(1)

1+x
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5. Vl + 3a. 8. Va3 + bs.

6. VI -5x2
. 9- V^ + l.

7. Va2 + 62
. io. V9a2 -16 62

.

CONVERGENOY AND DIVERGENCY OP SERIES

247. An infinite series is said to be Convergent when the

sum of the first n terms approaches a fixed finite number as a

limit (§ 125), when n is indefinitely increased.

An infinite series is said to be Divergent when the sum of

the first n terms can be made numerically greater than any

assigned number, however great, by taking n sufficiently great.

248. Consider, for example, the infinite series

1 -{- x + x2
-{- X

s+ •••.

I. Suppose x — a?!, where xx is numerically < 1.

The sum of the first n terms is now

1 + Xl + Xl>+ ... + Xl
»-i = l^£L

n

(§ 103, VII).
1 — Xi

If n be indefinitely increased, x" decreases indefinitely in

absolute value, and approaches the limit 0.

Then the fraction approaches the limit .

1 — xx
1— x1

That is, the sum of the first n terms approaches a fixed finite

number as a limit, when n is indefinitely increased.

Hence, the series is convergent when x is numerically < 1.

II. Suppose 05= 1.

In this case, each term of the series is equal to 1, and the

sum of the first n terms is equal to n
;
and this sum can be

made to exceed any assigned number, however great, by taking

n sufficiently great.

Hence, the series is divergent when x=l.
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III. Suppose x m — 1.

In this case, the series takes the form 1 — 1 + 1 — 1 + ...,

and the sum of the first n terms is either 1 or according as n

is odd or even.

Hence, the series is neither convergent nor divergent when

08-1.
An infinite series which is neither convergent nor divergent

is called an Oscillating Series.

IV. Suppose x = x
ly
where x is numerically > 1.

The sum of the first n terms is now

1 + Xl + Xl
2 + ... + Xi

n-l = ^LJZI
(§ 103

, VII).xx
— 1

x n — 1
By taking n sufficiently great,

— can be made to numer-
al
— 1

ically exceed any assigned number, however great.

Hence, the series is divergent when x is numerically > 1.

249. Consider the infinite series

l+x + x2 + xs
-\ ,

developed by the fraction (§ 246).
1 — x

Let x= .1, in which case the series is convergent (§ 248).

The series now takes the form 1 + .1 +.01 4- .001 -f-
•••

,
while

the value of the fraction is — or — .

.9 9

In this case, however great the number of terms taken, their

sum will never exactly equal y*-.

But the sum approaches this value as a limit; for the series

is a decreasing geometric progression, whose first term is 1, and

ratio .1
; and, by § 242, its sum to infinity is

,
or — .

Thus, if an infinite series is convergent, the greater the num-

ber of terms taken, the more nearly does their sum approach
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the value of the expression from which the series was

developed.

Again, let x =.10, in which case the series is divergent.

The series now takes the form' 1 +10 + 100 + 1000 H ,

while the value of the fraction is —
,
or — -.

In this case the greater the number of terms taken, the

more does their sum diverge from the value —
J.

Thus, if an infinite series is divergent, the greater the num-

ber of terms taken, the more does their sum diverge from the

value of the expression from which the series was developed.
It follows from the above that an infinite series cannot be

used for the purposes of demonstration if it is divergent.

SUMMATION OF SERIES

250. The Summation of an infinite literal series is the pro-

cess of finding an expression from which the series may be

developed.

RECURRING SERIES

251. Consider the infinite series

l + 2oj+ 3a2 + 4ar3+ 5a4
+....

Here (3 x
2

)
- 2 x(2 x) + af(1)

= 0,

(4 X
s

)
- 2 x(S x2

) + x\2 x)
= 0, etc.

That is, any three consecutive terms', as, for example, 2 x, 3 x2
,

and 4: Xs
,
are so related that the third, minus 2x times the

second, plus x2 times the first, equals 0.

252. A Recurring Series is an infinite series of the form

Oo+a^+o^H— ,

where any r + 1 consecutive terms, as for example

anx ,
a u_iX ,

an_ 2x , •••, an_ rx ,
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are so related that

anx
n + px (a^x"-'

1

) + qx
2

(an_^x
n-2

) + ... + sxr

(an_ rx
n~ r

)
=

;

p, q}
•

••, s being constants.

The above recurring series is said to be of the rth order, and

the expression
1 +px -{-px

2
-f • • • + sxr

is called its scale of relation.

The recurring series of § 251 is of the second order, and its

scale of relation is 1 — 2 x+ x2
.

An infinite geometric series is a recurring series of the first order.

Thus, in the infinite geometric series

1 + x+x2 +x* + .--,

any two consecutive terms, as for example x% and ic
2

,
are so related that

(x
3
)
—

x(x'
2
)
=

;
and the scale of relation is 1 — x.

253. To find the scale of relation of a recurring series.

If the series is cf the first order, the scale of relation may be

found by dividing any term by the preceding term, and sub-

tracting the result from 1.

If it is of the second order, a
,
a19 a2,

a3, •••, its consecutive

coefficients, and 1+px+ qx
2
its scale of relation, we shall have

'<h+P<ii + q<Xo
= 0, (1)

^a3 +pa2 + 9«i = 0;

from which p and q may be determined.

If the series is of the third order, cr
,
a1? a 2 , a3,

a 4, a5, •••, its

consecutive coefficients, and 1 -\-px -f qx
2 + rx3

its scale of rela-

tion, we shall have
'

o-8 +Vai + Qai + rao
= 0,

«4 +i>«3+ qa2 + ra^ = 0,

a5 +pa4 + qa3 + ra2
=

;

from which p, q, and r may be determined.

To ascertain the order of a series, we may first make trial of

a scale of relation of three terms.
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If the result does not agree with the series, try a scale of

four terms, five terms, and so on until the correct scale of rela-

tion is found.

If the series is assumed to be of too high an order, the equa-

tions corresponding to the assumed scale will not be inde-

pendent (§ 43).

254. To find the sum (§ 250) of a recurring series when its

scale of relation is known.

Let 1 + px-\-qx
2 be the scale of relation of the series

a + axx + a2x
2

-f- •••.

Denoting the sum of the first n terms by &ni we have

Sn = a + ctix 4 a2x2 + \- an-ixn-\

Then, pxSn = pa^x + pa\x
2 + • • • + pan-2Xn

~l + pan-\Xn ,

and qx
2Sn = qa x2 + ••• -h qan-sx

11 - 1
-f qan-2X

n + qan-\Xn+l .

Adding these equations, and remembering that, by virtue of the scale

of relation,

«2 +pai 4- qa = 0,
•
•, an-i +pan - 2 + qan-z = 0,

the coefficients of x2
,
xs

,
•

••, a:
n_1 become 0, and we have

8n0. +px + qx
2
) = a + («i +pa )x 4- (pan-i 4- qan-2)x

n
4- ^n-i«n+1 .

Whence,
•

g _ q 4-(«i 4- P«o)a +(pqn-i + gan-2)x
n + gan-izw+1 . ^n

1 + px 4- ##
2

which is a formula for the sum of the first n terms of a recurring series of

the second order.

If x is so taken that the given series is convergent, xn and xn+ l approach

the limit 0, when n is indefinitely increased, and the fraction (1) ap-

proaches the limit

1 + px 4* qx
2

If this fraction be expanded into an infinite series by division, we

obtain the given series
;
but it is only when the series is convergent that

it expresses the value of the fraction.
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Then, the sum of the given series (§ 250) is given by the formula

# - ftp +Oi 4- p«n)a;
i

/
2 )

1 + px -f qx
l

If q = 0, the series is of the first order, and «i +p«o = ;
then

1 + px

which is a formula for the sum of a recurring series of the first order.

(Compare § 242.)

In like manner, we shall find the formula

8 _ tto 4- (fli 4- pao)x 4- (ff2 + ff«i 4- gao)x
2

^4
n

1 +px 4- gx
2
4- rx3

for the sum of a recurring series of the third order.

255. A recurring series is formed by the expansion in an

infinite series of a fraction, called the generating fraction.

The operation of summation reproduces the fraction, the

process being the reverse of that of § 26S.

256. Ex. Find the sum of the series

2 + x + 5x2 + 7a? + 17x4 + ....

To determine the scale of relation, we first assume the series to be of

the second order (§ 253).

Substituting a - 2, a\ — 1, a 2 = 5, a s — 7, in (1), § 253,

J 5 + p+2q=0,
1 7 + r

op 4- q = Q.

Solving these equations, p— — 1, tf

— -2.
To ascertain if 1 — x — 2 x2 is the correct scale of relation, consider the

fifth term.

Since 17 x4 + (- x) (7 x3
) + (- 2 x2) (5 x

2
) is equal to 0, it follows that

1 — x — 2 x2 is the correct scale.

Substituting the values of a
, «i, i>, and q in (2),

jy_ 24(l-2)g _ 2-x
l-x-2x2 l-x-2x2

'

The result may be verified by expansion.
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EXERCISE 63

Find the sum of the following:

l 4-r-# + 7#2 — 5ar3 +19^H .

2 . l-13x-23x2 -85xi -239x4 + ....

3 . l+5x + 21x2+ 85x3 + Mlxi + ....

4 . 5-13a + 35a2 -97ar3
-h275a

4 + ....

5 . 3 + 10# + 36^ + 136arJ + 528a4 + ....

6. 3 + x + 33x2 + 109x* + 657xi + ....

7 . 14. 2 #- 3 a;
2 + 6^r3 -7 a;

4 + 10 a;
5 -11 a6+ ....

8. l-2x-a2 -7ar3 -18#4 -59;r5 -181a6 + ....

THE DIFFERENTIAL METHOD

257. If the first term of a series be subtracted from the

second, the second from the third, and so on, the series formed

is called the first order of differences of the given series.

The first order of differences of this new series is called

the second order of differences of the given series
;
and so on.

Thus, in the series

1, 8, 27, 64, 125, 216, ..,

the successive orders of differences are as follows :

1st order, 7, 19, 37, 61, . 91, ....

2d order, 12, 18, 24, 30, ....

3d order, 6, 6, 6, ....

4th order, 0, 0, ....

The Differential Method is a method for finding any term, or

the sum of any number of terms of a series, by means of its

successive orders of differences.

258. To find any term of the series

aU a2) a 3)
a

4) '") a »l an+l> '"•

The successive orders of differences are as follows:

1st order, a2
— «i, 03 — «2, «4 — «8i •••» «n+i

— «n, ••••

2d order, a3
— 2a» + <*h a *

— 2 a* + a^ '"-

3d order, a4
— 3 a3 + 3 a 2

—
«i>

•••
J

etc.
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Denoting the first terms of the 1st, 2d, 3d, •••, orders of dif-

ferences by d
ly
d2,

d3, •••, respectively, we have

di = a2
— a\ ; whence, a2 = «i + d\.

d2 = as — 2 a2 + «i ; whence,

as = — «i + 2 ^2 + d2 = — a\ + 2 « x + 2 c?i + d2 = cti + 2 dfi + (^.

e?3 = « 4
— 3 a3 + 3 a 2

— «i ; whence,

«4 = «i — 3 a2 + 3 a3 + (?3 = «i -f- 3 di + 3 d2 + d3 ;
etc.

It will be observed, in the values of a2 ,
a3,

and a4,
that the

coefficients of the terms are the same as the coefficients of the

terms in the expansion by the Binomial Theorem of a -J- a; to

the first, second, and third powers, respectively.

We will now prove by Mathematical Induction that this law

holds for any term of the given series.

Assume the law to hold for the ?ith term, an ;
then the coef-

ficients of the terms will be the same as the coefficients of the

terms in the expansion by the Binomial Theorem of a + x to

the (n — l)th power ;
that is,

an=a1 +(n-l)d1 +^^^^ld2

+ (n-l)(» -2)^-3)^^ (1)
lit

If the law holds for the nth term of any series, it must also

hold for the nth term of the first order of differences
; or,

an+1 -an = dl + (n-l)d2+ (n - 1

^
n - 2

^ d3 + .... (2)

Adding (1) and (2), we have

an+1 = a1 + [(n-l)+iyi1 +
1

^±[(n-2) + 2]d2

+ »- 1^ 2)

[(n-3)+ 3]d< +...

=
fll + ndl +!l^^ (3)

If. l£

This result is in accordance with the above law.
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Hence, if the law holds for the nth. term of the given series,

it holds for the (n + l)th term
;
but we know that it holds for

the fourth term, and hence it holds for the fifth term; and

so on.

Therefore, (1) holds for any term of the given series.

If the differences finally become zero, the value of an can be obtained

exactly.

259. To find the sum of the first n terms of the series

Ctiy 0,9, &3, &4 ,
&5,

••*. {±J

Let S denote the sum of the first n terms.

Then S is the (n + l)th term of the series

0, ft, ai + «2, cii + a2 + as, •••• (2)

The first order of differences of (2) is the same as (1) ; whence, the

2d order of differences of (2) is the same as the 1st order of differences

of (I), the 3d order of (2) is the same as the 2d order of (1), and so on.

Then, if di, d2 , •••, represent the first terms of the 1st, 2d, •
•-, orders

of differences of (1), cti, di, d2 , ..., will be the first terms of the 1st, 2d,

3d, •••, orders of differences of (2).

Putting a\ — 0, d\ = «i, d2 — c?i, etc., in (3), § 258,

<y = nfl 1 + <w
t

" 1^i + <w " 1^w " 2 > da + -. (3)
\1 . 12.

260. Ex. Find the twelfth term, and the sum of the first

twelve terms, of the series 1, 8, 27, 64, 125, •••.

Here, n = 12, a\ xs 1.

Also, di = 7, d2 = 12, <h = 0, and d4 = (§ 257).

Substituting in (1), § 258, the twelfth term

a- 1 + 11 . 7 + llll^ . 12 + 11,10,9
. 6 = 1728.

1-2 1.2-3

Substituting in (3), § 250, the sum of the first twelve terms

= 12 + l^H.7 + ]2 - 11 - 10
.12 +

12 - 11 - :l0 - i>
-0 = C084.

1.2 1.2-3 1.2-3.4
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261. Piles of Shot.

Ex. If shot be piled in the shape of a pyramid with a tri-

angular base, each side of which exhibits 9 shot, find the num-

ber in the pile.

The number of shot in the first five courses are 1, 3, 6, 10, and 15,

respectively ;
we have then to find the sum of the first nine terms of the

series 1, 3, 6, 10, 15, • ••
;
the successive orders of differences are as

follows :

1st order, . 2, 3, 4, 5, ....

2d order, . 1, 1, 1, ....

3d order, . 0, 0, ....

Putting n = 9, d! = 1, di = 2, d2 = 1 in (3), § 259,

S = 9 +— • 2 +
9 ' 8 ' 7

• 1 = 165 .

1-2 1-2-3

. EXERCISE 64

i. Find the first term of the sixth order of differences of

the series 3, 5, 11, 27, 67, 159, 375, • ••.

2. Find the 15th term, and the sum of the first 15 terms, of

the series 1, 9, 21, 37, 57, •••.

3. Find the 14th term, and the sum of the first 14 terms, of

the series 5, 14, 15, 8, —7, •••.

4. Find the sum of the first n multiples of 3.

5. If shot be piled in the shape of a pyramid with a square

base, each side of which exhibits 25 shot, find the number in

the pile. <

6. Find the 13th term, and the sum of the first 13 terms, of

the series 1, 3, 9, 25, 57, 111, ....

7. Find the 10th term, and the sum of the first 10 terms, of

the series 4,
-

2, 10, 4,
-

56,
-

206, ....

8. Find the sum of the squares of the first n multiples of 2.

9. Find the 71th term, and the sum of the first n terms, of

the series 1,
—

3,
—

13,
—

17, —3, 41, ....
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10. Find the number of shot in a pile of 9 courses, with a

rectangular base, if the number of shot in the longest side of

the base is 24.

ii. Find the number of shot in a truncated pile of 8

courses, with a rectangular base, if the number of shot in

the length and breadth of the base are 20 and 14, respec-

tively.

12. Find the 12th term, and the sum of the first 12 terms, of

the series 1, 13, 49, 139, 333, 701, 1333, ....

13. Find the 9th term, and £he sum of the first 9 terms, of

the series 20, 4, -36, -132, -356, -820, -1676, ....

14. Find the sum of the fourth powers of the first n natural

numbers.

15. Find the number of shot in a pile with a rectangular

base, if the number of shot in the length and breadth of the

base are m and n, respectively.

16. How many shot are contained in a truncated pile of n

courses, whose bases are triangles, if the number of shot in

each side of the upper base is m ?

INTERPOLATION

262. Interpolation is the process of introducing between the

terms of a series other terms conforming to the law of the

series.

Its usual application is in finding intermediate numbers be-

tween those given in Mathematical Tables.

The operation is effected by giving fractional values to n in

(1), § 258.

The method of Interpolation rests on the assumption that a

formula which has been proved for an integral value of n,

holds also when n is fractional.
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263. Ex. Given V5 = 2.2361, V0 = 2.4495, V7 = 2.6458,

V8 = 2.8284, • • •

;
find Vo\3.

In this case the successive orders of differences are :

.2134, .1963, .1826, ...

-.0171, -.0137, ....

.0034, ....

Whence, dx = .2134, d2 =-.0171, d3 = .0034, ....

Now, the required term is distant 1.3 intervals from V5.

Substituting n = 2.3 in (1), § 258, we have, approximately,

V6\3 = 2.2361 + 1.3 x .2134 + 1 '3 x
f (

-
.0171)

1.3 x .3x-.7
>0034

1x2x3

= 2.2361 + .2774 - .0033 - .0002 = 2.5100.

EXERCISE 65

i. Given log 26 = 1.4150, log 27 = 1.4314, log 28 = 1.4472,

log 29 = 1.4624, • . .

;
find log 26.7.

2. Given r#$[ = 4.49794, ^92 = 4.51436, ^93 = 4.53066,

^94 = 4.54684, •

-.; find y/WS.

3. The reciprocal of 35 is .02857; of 36, .02778; of

37, .02703; of 38, .02632; etc. Find the reciprocal of

36.28,

4. Given log 124 = 2.09342, log 125 = 2.09691, log 126

= 2.10037, log 127 = 2.10380, • • .

;
find log 125.36.

5. Given 213 = 9261, 228 = 10648, 233 = 12167, 243 = 13824,

and 253 = 15625
;
find the cube of 21f

6. Given log 61 = 1.78533, log 62 = 1.79239, log 63 = 1.79934,

log 64 = 1.80618, ...
;
find log 63,527,
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XI. UNDETERMINED COEFFICIENTS

THE THEOREM OF UNDETERMINED COEFFICIENTS

264. An important method for expanding expressions into

series is based on tLe following theorem :

If the series A + Bx + Cx2 + Dx* + ••• is always equal
to the series A' + B'x + Cx2 + D'x3 + •••, when x has any
value which makes both series convergent, the coef-
ficients of like powers of x in the series will be equal ;

that is, A = A', B = B<, C = C.

265. Before giving the proof of the Theorem of Undeter-

mined Coefficients, we will prove two theorems in regard to

infinite series.

First, if the infinite series

a + bx + cx2 + dx2
-f •••

is convergent for some finite value of x, it is finite for this

value of x (§ 247), and therefore finite when x = 0.

Hence, the series is convergent when x = 0.

Second, if the infinite series

ax + bx2 + ex5 + •••

is convergent for some finite value of x, it equals when x = 0.

For, ax + bx2
-f ex

3 + ••• is finite for this value of x, and
hence a + bx + ex2 + • • • is finite for this value of x.

Then, a + bx + cx2
-\-

..« is finite when # = 0; and therefore

»(a + bx + cx2 + •••),
or ax + bx2 + cx3 + •••, equals when

x = 0.

266. Proof of the Theorem of Undetermined Coefficients.

The equation

A + Bx+Cx2 +Dx*+ ... =A' + B'x+C'x°- + D'x»+ ...
(1)

is satisfied when x has any value which makes both members

convergent; and since both members are convergent when
x = (§ 265), the equation is satisfied when x = 0.
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Putting x = 0, we have, by § 265,

Bx+Cx*+ Dx* + .-• =0, and B'x + Ox2 + DW + ••• =0.

Whence, A = A'.

Subtracting A from the first member of (1), and its equal A'

from the second member, we have

Bx+Cx* + Dx* + ...=B'x'+C'x2 + D'x' + ....

Dividing each term by x,

B+Cx + Dx2 + ... =B' + Cx + D'x*+ .... (2)

The members of this equation are finite for the same values

of x as the given series (§ 265).

Then, they are convergent, and therefore equal, for the same

values of x as the given series.

Then the equation (2) is satisfied when x = 0.

Putting x = 0, we have B = B'.

Proceeding in this way, we may prove C= (7, etc.

267. The theorem of § 264 holds when either or both of the

given series are finite.

EXPANSION OP FRACTIONS

2 3 x2 — x3

268. i. Expand in ascending powers of x.
1 — 2 x -f 3 x

1

Assume 2 ~ 8 ^ ~ ^ = A + Bx + Cx2 + B& + Ex* + — , (1)
1 — 2 x + 3 x2

where ^4, J5, 0, Z>, E, •••, are numbers independent of x.

Clearing of fractions, and collecting the terms in the second member

involving like powers of x, we have

*4 +-. (2)2-Sx2 -x3 = A+ B\x+ C
-2A\ -2B

*:
2 + D
-2C
+ 3B

x3 + E
-2D
4-3(7

A vertical line, called a bar, is often used in place of parentheses.

Thus,
"

+ B I x is equivalent to (B — 2 A)x.
-2,4
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The second member of (1) must express the value of the fraction for

every value of x which makes the series convergent (§ 249) ;
and there-

fore equation (2) is satisfied when x has any value which makes the

second member convergent.

Then, by § 267, the coefficients of like powers of x in (2) must be

equal ;
that is,

A= 2.

B-2A = 0;0r, £ = 2.4 = 4.

C-2B + 3A = -S; or, C = 2 B- 3 A - 3 = .- 1.

Z>_2 C+3.B=- 1; or, Z) = 2 C- 3 2? - 1 = - 15.

E-2D+3C= 0;or, E=2D-3C =-27; etc.

Substituting these values in (1), we have

2 _ 3 x2 - x
1 — 2 x + 3 x2

= 2+4x-x2 -\5xS-27x* .

The result may be verified by division.

The series expresses the value of the fraction only for such values of x

as make it convergent (§ 249).

If the numerator and denominator contain only even powers
of x, the operation may be abridged by assuming a series con-

taining only the even powers of x.

2 -I- 4 a?
2 x4

Thus, if the fraction were ———
, we should assume

it equal to A + B x2 + C xA + D xG + E ar
s
-f — .

In like manner, if the numerator contains only odd powers
of 05,

and the denominator only even powers, we should assume

a series containing only the odd powers of x.

If every term of the numerator contains x, we may assume a

series commencing with the lowest power of x in the numerator.

If every term of the denominator contains x, we determine

by actual division what power of x will occur in the first term

of the expansion, and then assume the fraction equal to a series

commencing with this power of x, the exponents of x in the

succeeding terms increasing by unity as before.

2. Expand — in ascending powers of x.
3 x-— xr
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Dividing 1 by 3 ic
2

,
the quotient is—-

;
we then assume,

o

= Ax-'2 + Bx~* + C + Dx + Ex2 + — . (3)
3 x2 - x3

Clearing of fractions.

l=3^ + 3#|x + 3C|x
2 + 3.D|z

3 + 3.E'

_ A - i? - C - i>

z4 + «

Equating coefficients of like powers of x,

SA = \,3B-A =
1
3C-B = 0,3D-C = 0,3E-D = 0', etc.

Whence, A =
\,

B=l, = 1, D = ±,
**^.~.

Substituting in (8), _£_-^f|+i+Jf^*-
In Ex. 1, E = 2 D — 3 C

;
that is, the coefficient of se

4
equals twice the

coefficient of the preceding term, minus three times the coefficient of the

next but one preceding.

It is evident that this law holds for the succeeding terms
; thus, the

coefficient of x5 is 2 x (- 27)
- 3 x (- 15), or - 9.

After the law of coefficients has been found in any expansion, the terms

may be found more easily than by long division
;
and for this reason the

method of § 268 is to be preferred when a large number of terms is

required.

The law for Ex. 2 is that each coefficient is one-third the preceding.

EXERCISE 66

Expand each of the following to five terms in ascending

powers of x :

4 + 2a 3 + x + x2 1 + 2 a; + 4 .r
2

'

l-Vx+ 3-x*'

5 4- .6 x2

2-3x2 + x3
'

1 _ 6 tf + 4 g8

z+Jf^2&

1-23
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EXPANSION OF SURDS

269. Ex. Expand Vl — x in ascending powers of x.

Assume Vl - x = A + Bx + Cx'2 -f Dx* + E& + • ••.

Squaring both members, we have, by § 167,

(1)

l-x= A*

+ 2AB
x+ B2 \x2

+ 2AC\ + 2AD
x*+ C 2

+ 2AE
+ 2BD

\
+ 2BC

Equating coefficients of like powers of x,

A2 = 1; or, A=l.

2AB = -1; or, B=- _I=-i.
2A 2

x* + -

0; or, C=-& + 2AC

2AD+2BC

C2 + 2AE + 2BD =
; or, E

2A

0; or, B=-^ =

A

1

"8*

t
16*

C2 + 2BD_
2A 128'

etc.

Substituting these values in (1), we have

x _ x? _ x*_ _ Sac4

VI - x = 1 -
2 g 16 128

"

The result may be verified by Evolution.

The series expresses the value of Vl — x only for such values of x as

make it convergent.

EXERCISE 67

Expand each of the following to five terms in ascending

powers of x:

i. Vl + 2 x.

2. Vl - 3 X.

3- Vl-4a + a;
2

. 5. Vl-f6z.

4. Vl -f x — x2
. 6. Vl — x — 2 a:-.

PARTIAL, FRACTIONS

270. If the denominator of a fraction can be resolved into

factors, each of the first degree in x
}
and the numerator is of a
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lower degree than the denominator, the Theorem of Undeter-

mined Coefficients enables us to express the given fraction as

the sum of two or more partial fractions, whose denominators

are factors of the given denominator, and whose numerators

are independent of x.

271. Case I. No factors of the denominator equal.

19 x 4- 1
i. Separate — —— into partial fractions.1

(3x-l)(5x + 2)
'

Assume 19 * +1 = A + B
, (1)

where A and B are numbers independent of as.

Clearing of fractions, 19 x + 1 = A(JS x + 2) -f B(?> x — 1).

Or, 19x+l = (5A+SB)x + 2A-B. (2)

The second member of (1) must express the value of the given fraction

for every value of x.

Hence, equation (2) is satisfied by every value of x
;
and by § 267, the

coefficients of like powers of x in the two members are equal.

That is, 5i + 35 = 19,

and 2A-B = 1.

Solving these equations, we obtain A = 2 and B = 3.

Substituting in (1),
19 x + 1 = ? l ?

(8 x- 1) (6 x + St; 3 x - 1 5 x + 2

The result may be verified by finding the sum of the partial
fractions.

2. Separate -^ into partial fractions.
2x — x~ — x3

The factors of 2 a - x2 - %* are
sc,

1 - x, and 2 + x (§ 103, III, VIII).

Assume then, x+A— _ A + _JL_
_( *?_i.

2 x — x2 — x3 x 1 — x 2 + x

Clearing of fractions, we have

x + 4 = ^4(1 -x)(2 + x) + Bx(2 + x) + Cx(l - x).

This equation, being satisfied by every value of x, is satisfied when x= 0*
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Putting x = 0, we have 4 = 2 A, or A — 2.

Again, the equation is satisfied when x = 1.

5
Putting x = 1, we have 5 = 3 J5, or i? = --

3

The equation is also satisfied when x.= — 2.

Putting x = —
2, we have 2^—6 C, or C = —

J.

The„,
* + 4 = ? +_L + ^i_ = ? + 6 1

'

2x — x2 — xs x 1 — x 2 + x x S(l
—

x) 3(2 + x)

To find the value of A, in Ex. 2, we give to x stick a value as will

make the coefficients of B and C equal to zero ; and we proceed In a

similar manner.to find the values of B and C.

This method of finding A, B, and C is usually shorter than that used

in Ex. 1.

Case II. All the factors of the denominator equal,

x* - jla? + 26 .

Let it be required to separate
——-~— into partial

fractions.

Substituting y -f 3 for a;, the fraction becomes

(y + 3)
2 - ll(y +3)+26 = y2-5y + 2 = l 5

|

2

2/
3

2/
3

y y'
2

y*

Replacing y by x — 3, the result takes the form

1 5 2

as _ 3 (a
_

3)2 (x
-

3)
8

This shows that the given fraction can be expressed as the sum of

three partial fractions, whose numerators are independent of .r, and

whose denominators are the powers of x — 3 beginning with the first and

ending with the third.

Similar considerations hold with respect to any exam pic
1

under Case II
;
the number of partial fractions in any case

being the same as the number of equal factors in the denomi-

nator of the given fraction.

6 x 4- 5
Ex. Separate —— into partial fractions.

(3x + 5)
2 l

In accordance with the above principle, we assume the given fraction
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equal to the sum of two partial fractions, whose denominators are the

powers of 8 x + 5 beginning with the first and ending with the second.

That is,

6 *+ 5
,=

A
+-

B

Ex. Separate
—-—

^~2 into partial fractions.

(3x+ 5)
2 3x + 5 (3x + 5)

2

Clearing of fractions, 6 x + 5 = 4.(3 a; + 5) + B.

= SAx + 5A + B.

Equating coefficients of like powers of x,

3 A = 6,

and 5 A + 5 = 5.

Solving these equations, J. = 2 and i? = — 5.

Whence _6x±6_ =_2 5

(3 x + 5)
2 3 x + 5 (3 x + 5)

2

Case III. Some of the factors of the denominator equal.

a? - 4 a? -f 3 ..

a?(a? + l)
2

The method in Case III is a combination of the methods of Cases I and
II

;
we assume,

x2 - 4 x + 3 __ A B C
x(x + l)

2 x x + 1 (x + l)
2

'

Clearing of fractions,

x2— 4x + 3 = 4(x + l)
2 + J3x(x + jj + 0a.

= (A + B)x
2 + (2A + B+C)x + A.

Equating coefficients of like powers of x,

A + B = l,

2A+ J5+ C = -4,
and A = 3.

Solving these equations, A = 3, J5 = — 2, and (7 = — 8.

Whence,
*-** + « = ? _ _^_ _ 8

.

x(x + l)
2 X x+1 (x + 1)

2

The following general rule for Case III will be found convenient :

XA fraction of the form should be assumed

equal to {x + a)(.x+b)-(.x + my
*

.+
*

+... +^ + _JL_ + ...+ _^_+..
x + a x + b x + m (x + m) 2

(x + m) r
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single factors like x + a and x + b having single partial fractions cor-

responding, arranged as in Case I
;
and repeated factors like (x + m)

having r partial fractions corresponding, arranged as in Case II.

272. If the degree of the numerator is equal to, or greater

than, that of the denominator, the preceding methods are

inapplicable.

In such a case, we divide the numerator by the denominator

until a remainder is obtained which is of a lower degree than

the denominator.

Xs _ gx 2 _ j
Ex. Separate into an integral expression and

partial fractions.

Dividing x8 — 3 x2 — 1 by x2 —
x, the quotient is x — 2, and the re-

mainder — 2 x — 1
;
we then have

a*-3a*-l
=a; 2

,

-2S-1
,

(1)
X2 — X X2 — X

O y i

We can now separate into partial fractions by the method
x2 — x

1 3
of Case I

;
the result is

x x— 1

Substituting in (1),
^ i = x _2 + ---

e

x x — 1

Another way to solve the above example is to combine the methods of

§§ 268 and 271, and assume the given fraction equal to

Ax + B +
C
+ _D^.x x— 1

273. If the denominator of a fraction can be resolved into

factors partly of the first and partly of the second, or all of the

second degree, in x, and the numerator is of a lower degree

than the denominator, the Theorem of Undetermined Coeffi-

cients enables us to express the given fraction -as the sum of

two or more partial fractions, whose denominators are factors

of the given denominator, and whose numerators are inde-

pendent of x in the case of fractions corresponding to factors
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of the first degree, and of the form Ax + B in the case of

fractions corresponding to factors of the second degree.

The only exceptions occur when the factors of the denominator are of

the second degree and all equal.

Ex. Separate into partial fractions.
x3 + l

The factors of the denominator are x + 1 and x2 — x + 1.

Assume then -1— = -A_ + fx
+V

. (1)
x* + l x+l x2 -x+l

Clearing of fractions, 1 = A(x2 — x + 1) + (Bx + C) (x + 1).

Or, % ^ (4 + B)x2 + (- A + B + C)x + A + C.

Equating coefficients of like powers of x,

A + B = 0,

-A + B+C = 0,

and .4 + C = 1.

Solving these equations, A = J,
I? = — J, and (7 = f.

1 1 x-2
Substituting in (1),

x3 + l 8(x + l) 3(£
2 -x+l)

EXERCISE 68

Separate into partial fractions :

%
-1

6
a8 + 4a2 + 2a; + 3

a? _ 9 3 + 20
(a;

2 + 1) (a;
2 + x + 1)

15x-2T „ 3a;-7
7-

10x2 + ^-21 ^-2^-8

2a? + 3
8

6x?-12
a-*-a&-12 a^-5a;2

-f-4

12 a; + 18 «2 ~15a?+ 3

^ + 3a2 -18x* ar
9 -3x-28'

43a-31 5a2+ 16a;-2
30 a2 -12 a; -306 ^ + 4^-3^-18
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12.

13.

14.

18.

Sxi
-^16xz-10x2

-^2Sx-\-ll
"*

2x* + x-3
59x-5S

12 a;
2 -25 a + 12*

2^-11^4- 19

x*-§x* + 12x-%
2xs -3x-8
(x> + x-2)

2

'

.

X3— X

15.

16.

17.

2x* + x2 + 5x

(x
i + 2x + l)(x

2 -x+ l)

x*+2a?-9x2 + 7x
x4— 4:Xs + 6x2 — 4:X + l

12ft4 + 19ar*-7a:

4a;4 + 1

2ar>-25L-?
19. **-*. 20

x(x
2+x jr \)+2(x

2

+x+l) #4
+a;

2
+-l

2x-Z
4tx*—x

REVERSION OP SERIES

274. To revert a given series y = a + bxm +- cxn +- ••• is to

express # as a series proceeding in ascending powers of y.

Ex. Revert the series y = 2x — 3x2
-\-4:X

s — 5x4 + •••.

Assume x = Ay + By2 + Cyz + Zty
4 + •••.

Substituting in this the given value of y,

x = A(2 x - 3 x2 + 4x3 - 5 z4 + •••)

+ 5(4 x2 + 9 £4 - 12 x3 + 16 x* + —
)

-f (7(8 x
3 - 36 x4 + .-•) + 2>(16 x4 +

(1)

)+"
That is, x = 2 ^4x - 3 .4 1 x2 + 4 .4

+ 45! - 12 B
+ 8(7

x3 — 5 ^4

+ 25 5
-36(7

+ 16 2)

sc
4 +

Equating coefficients of like powers of x,

2.4 = 1;

4 4-125 + 8 (7=0;
- 5 .4 + 25 B - 36 (7 + 16 D =

;
etc.

Solving, A s J, 5 = f , (7 = Ai *> = f¥s, etc.

Substituting in (1) ,
x = J y + f y

2 + ^ y
3 + T

3
2\ y

4 + • • -.

If the even powers of x are wanting in the given series, the

operation may be abridged by assuming x equal to a series

containing only the odd powers of y.
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EXERCISE 69

Revert each of the following to four terms :

i. 2/
= ^ + 3^ + 5x3 + 7^+ ....

3< y = x + f + f + tjr ....

2. y = x-2x2 + 3x3 -4:X4 + ....
2 3 4

4 . y = 2x + 5x2 + 8x3 + llxi + ....

/y» /V»2 /y»3 /y»4 /y, /yvJ ,y»3 /y»4

5 ' 2/
=
2"4 + 6-8 + "" 6 - 2/

=
|I

+
[3

+
[4

+
|5

+ --

7. 2/=2o;-4^+6a)
5-8^+.., 8. y =

|
+J + f + f +

""

XII. PERMUTATIONS AND COMBINATIONS

275. The different orders in which things can be arranged
are called their Permutations.

Thus, the permutations of the letters a, b, c, taken two at a

time, are ab, ac, ba, be, ca, cb\ and their permutations, taken

three at a time, are abc, acb, bac, bca, cab, cba.

276. The Combinations of things are the different collections

which can be formed from them without regard to the order

in which they are placed.

Thus, the combinations of the letters a, b, c, taken two at a

time, are ab, be, ca
;
for though ab and ba are different permu-

tations, they form the same combination.

277. To find the number of permutations of n different things

taken tivo at a time.

Consider the n letters, a, b, c, •••.

In making any particular permutation of two letters, the

first letter may be any one of the n
;
that is, the first place can

be filled in n different ways.
After the first place has been filled, the second place can be

filled with any one of the remaining n — 1 letters.

Then, the whole number of permutations of the letfers taken

two at a time is n(n — 1).

We will now consider the general case.
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278. To find the number of permutations of n different things

taken r at a time.

Consider the n letters a, b, c, •••.

In making any particular permutation of r letters, the first

letter may be any one of the n.

After the first place has been filled, the second place can be

filled with any one of the remaining n — 1 letters.

After the second place has been filled, the third place can be

filled in n — 2 different ways.

Continuing in this way, the rth place can be filled in

n — (r
—

1), or n — r + 1 different ways.

Then, the whole number of permutations of the letters taken

r at a time is given by the formula

nPr
= n(n-l)(n-2)-..(n-r + l). (1)

The number of permutations of n different things taken r at a time is

usually denoted J)y the symbol nPr.

279. If all the letters are taken, r = n, and (1) becomes

nPn = n(n-l)(n-2):-3-2-l = \n1_ (2)

Hence, the number of permutations of n different things

taken n at a time equals the product of the natural num-
bers from 1 to n inclusive. (See note, § 181.)

280. To find the number of combinations of n different things

taken r at a time.

The number of permutations of n different things taken r at

a time is
n(n-l)(n~2) ... (n-r-f 1) (§ 278).

But, by § 279, each combination of r different things may
have \r permutations.

•

Hence, the number of combinations of n different things taken

rata time equals the number of permutations divided by [r.

That is, nCr
= n(n-l)(n-2)..-(n-r + l) ; Q])

\r

The number of combinations of n different things taken r at a time is

usually denoted by the symbol „Or .
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281 . Multiplying both terms of the fraction (3) by the prod-

uct of the natural numbers from 1 to n — r inclusive, we have

C = n(n-l) ...(n -r + l)-(w-r) -2-l _ b
[r
X 1 • 2 • • •

(n
—

r) \r_ \

n — r

which is another form of the result.

282. The number of combinations of n different things
taken r at a time equals the number of combinations
taken n — r at a time.

For, for every selection of r things out of n, we leave a selec-

tion of n — r things.

The theorem may also be proved by substituting n — r for r, in the

result of § 281.

283. Examples.

i. How many changes can be rung with 10 bells, taking 7 at

a time ?

Putting n = 10, r = 7, in (1), § 278,

10P7 = 10- 9. 8- 7- 6. 5. 4 = 604800.

2. How many different combinations can be formed with 16

letters, taking 12 at a time ?

By § 282, the number of combinations of 16 different things, taken 12

at a time, equals the number of combinations of 16 different things, taken

4 at a time.

Putting n = 16, r = 4, in (3), § 280,

16.15.14.13 = 182(X16
1.2.3-4

3. How many different words, each consisting of 4 consonants

and 2 vowels, can be formed from 8 consonants and 4 vowels ?

The number of combinations of the 8 consonants, taken 4 at^a time, is

8 - 7 '°- 5
,or70.

1- 2-3-4
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The number of combinations of the 4 vowels, taken 2 at a time, is

i 3̂
,or6.

1-2'

Any one of the 70 sets of consonants may be associated with any one

of the 6 sets of vowels
; hence, there are in all 70 x 6, or 420 sets, each

containing 4 consonants and 2 vowels.

But each set of 6 letters may have
]_6,

or 720 different permutations

(§ 279).

Therefore, the whole number of different words is

420 x 720, or 302400.

EXERCISE 70

i. How many different permutations can be formed with

14 letters, taken 6 at a time ?

2. In how many different orders can the letters in the word

triangle be written, taken all together ?

3. How many combinations can be formed with 15 things,

taken 5 at a time ?

4. A certain play has 5 parts, to be taken by a company of

12 persons. In how many different ways can they be

assigned ?

5. How many combinations can be formed with 17 things,

taken 11 at a time ?

6. How many different numbers, of 6 different figures each,

can be formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, if each

number begins with 1, and ends with 9 ?

7. How many even numbers, of 5 different figures each, can

be formed from the digits 4, 5, 6, 7, 8 ?

8. How many different words, of 8 different letters each,

can be formed from the letters in the word ploughed, if the

third letter is o, the fourth w, and the seventh e ?
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9. How many different committees, of 8 persons each, can

be formed from a corporation of 14 persons ? In how many
will any particular individual be found?

10. There are 11 points in a plane, no 3 in the same straight

line. How many different quadrilaterals can be formed, having
4 of the points for vertices ?

11. From a pack of 52 cards, how many different hands of

6 cards each can be dealt ?

12. A and B are in a company of 48 men. If the company
is divided into equal squads of 6, in how many of them will A
and B be in the same squad ?

13. How many different words, each having 5 consonants

and 1 vowel, can be formed from 13 consonants and 4 vowels ?

14. Out of 10 soldiers and 15 sailors, how many different

parties can be formed, each consisting of 3 soldiers and 3

sailors ?

15. A man has 22 friends, of whom 14 are males. In how

many ways can he invite 16 guests from them, so that 10 may
be males ?

16. From 3 sergeants, 8 corporals, and 16 privates, how many
different parties can be formed, each consisting of 1 sergeant,

2 corporals, and 5 privates ?

17. Out of 3 capitals, 6 consonants, and 4 vowels, how many
different words of 6 letters each can be formed, each beginning
with a capital, and having 3 consonants and 2 vowels ?

18. How many different words of 8 letters each can be

formed from 8 letters, if 4 of the letters cannot be separated ?

How many if these 4 can only be in one order ?

19. How many different numbers, of 7 figures each, can be

formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, if the first, fourth,

and last digits are odd numbers ?
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284. To find the number of permutations of n things which are

not all different, taken all together.

Let there be n letters, of which p are a's, q are &'s, and r are

c's, the rest being all different.

Let N denote the number of permutations of these letters

taken all together.

Suppose that, in any particular permutation of the n letters,

the p a's were replaced by p new letters, differing from each

other and also from the remaining letters.

Then, by simply altering the order of these p letters among
themselves, without changing the positions of any of the other

letters, we could from the original permutation form [p differ-

ent permutations (§ 279).

If this were done in the case of each of the JV original per-

mutations, the whole number of permutations would be N x \p.

Again, if in any one of the latter the q 6's were replaced by

q new letters, differing from each other and from the remain-

ing letters, then by altering the order of these q letters among
themselves, we could from the original permutation form \q

different permutations ;
and if this were done in the case of

each of the N x \p permutations, the whole number of permu-

tations would be N x
]/)

x
|
q.

In like manner, if in each of the latter the r c's were re-

placed by r new letters, differing from each other and from

the remaining letters, and these r letters were permuted

among themselves, the whole number of permutations would be

Nx [px )_7
X ]r.

We now have the' original n letters replaced by n different

letters.

But the number of permutations of n different things taken

n at a time is I n (§ 279).

Therefore, N x \p X I q X I r = I n : or, N=—=~- •

L L_ L 1_
\p\q\r

Any other case can be treated in a similar maimer.
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Ex. How many permutations can be formed from the let-

ters in the word Tennessee, taken all together?

Here there are 4 e's, 2 n's, 2 s's, and 1 1.

Putting in the above formula n = 9, p = 4, q = 2, r = 2, we have

l& _5.6.7.8.9 = 378a
L4(_2|2 2 ' 2

EXERCISE 71

i. In how many different orders can the letters of the word

denomination be written ?•

2. There are 4 white billiard balls exactly alike, and 3 red

balls, also alike; in how many different orders can they be

arranged ?

3. In how many different orders can the letters of the word

independence be written ?

4. How many different signals can be made with 7 flags, of

which 2 are blue, 3 red, and 2 white, if all are hoisted for each

signal ?

5. How many different numbers of 8 digits can be formed

from the digits 4, 4, 3, 3, 3, 2, 2, 1 ?

6. In how many different ways can 2 dimes, 3 quarters, 4

halves, and 5 dollars be distributed among 14 persons, so that

each may receive a coin?

285. To find for what value of r the number of combinations

of n different things taken r at a time is greatest.

By § 280, the mimber of combinations of n different things,

taken r at a time, is

r _ n(tt-l)-(w-r+2)(n-r + l) m* '

L2.3...(r-l)r
' W
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Also, the number of combinations of n different things, taken

r — 1 at I t line, is

»(n \) \,
t (r hill n(n I) .,

The expression (1) Is obtained by multiplying the expres-

Bion (2) by
—

,
or — i.

The latter expression decreases as r increases.

If. then, we Bud the values of (I) corresponding to the Val-

ues L| 2j
• ». ••• Of /*. the results will OOntinnally increase so

i

« /• ! 1 .

'

-,

Long as is > l.
/'

I. Suppose a even; and let n »2m, where mn ia a positive

integer.

Then,
™—iX- beoomes — -—

r r

If, w>
2w'- r + 1

becomes
'" j 1

,and is 1.

2 m — r+1 . i ,", i

If r-m+ 1,
-

;
.

becomes r and is - I.

Then, ,0! will bave its greatest value when r»HM

II. Suppose N Oddj and let n
%2m I 1. where m is a posi-

tive integer,

1 hen. becomes " '

r r

if r ». - - -
j "

beoomes
"

-j and is >l,
r m

[fr«m+l, - - beoomes - 4~ti and equals 1,
r »< 4- 1

2 m r I

4>
tw

If r in I 2,
- - beoomes ^, and is <1.

r
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Then, nCr will have its greatest value when r equals in or

1 n— or — + 1.m -f- 1
;
that is,

Then, n(7r will have its greatest value when r equals

n 4- 1
or —~—

;
the results being the same in these two cases.

Li

XIII. DETERMINANTS

286. The solution of the equations

|

aY
x + b^y = c

lf

\ a& -f- bgj = c2,

is x — b& — b&
y = °2al

~ Cia2 .

afii
—

ajbi aYb2
— a2&i

The common denominator may be written in the form

a
l9 h

-1

(1)

This is understood as signifying the product of the upper
left-hand and lower right-hand numbers, minus the product of

the lower left-hand and upper right-hand.

The expression (1) is called a Determinant of the Second Order.

The numerators of the above fractions can also be expressed as deter-

minants
; thus,

b-zCi
— b\C2 =

Cl,
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The denominator of (1) may be written in the form

a2, b2, c2 . (2)

This is understood as signifying the sum of the products of the

numbers connected by lines

parallel to a line joining the

upper left-hand corner to the

lower right-hand, in the fol-

lowing diagram, minus the

sum of the products of the

numbers connected by lines

parallel to a line joining

the lower left-hand corner

to the upper right-hand.

The expression (2) is called a Determinant of the Third Order.

The numerator of (1) can also be expressed as a determinant, as follows :

ds, b3 ,
c8

as may be verified by expanding it by the above rule.

EXERCISE 72

Evaluate the following:

2.

14 15
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Show that
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288. The numbers in the first, second, etc., horizontal lines

of a determinant are said to be in the first, second, etc., rows,

respectively ;
and the numbers in the first, second, etc., vertical

columns, in the first, second, etc., columns.

The numbers constituting the determinant are called its

elements, and the products in the expanded form its terms.

Thus, in the determinant (2), of § 287, the elements are <i\, a2 ,
a3 ,

etc., and the terms aib 2C3,
— aib^, etc.

289. If, in any permutation of the numbers 1, 2, 3, •••, n,

a greater number precedes a less, there is said to be an

inversion.

Thus, in the case of five numbers, the permutation 4, 3, 1, 5, 2 has six

inversions
;
4 before 1, 3 before 1, 4 before 2, o before 2, 5 before 2, and

4 before 3.

290. General Definition of a Determinant.

Consider the n2 elements

a9

x
n, 3?

(1)

The notation in regard to suffixes, in (1), is that the first

suffix denotes the row, and the second the column, in which

the element is situated.

Thus, a
kt1

. is the element in the &th row and rth column.

Let all possible products of the elements taken n at a time

be formed, subject to the restriction that each product shall

contain one and only one element from each row, and one and

only one from each column, and write them so that the first

suffixes shall be in the order 1, 2, 3, ..., n.

This is equivalent to writing all the permutations of the numbers 1, 2,

3, •••, n in the second suffixes.
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Make each product 4- or — according as the number of in-

versions in the second suffixes is even or odd.

The expression (1) is called a Determinant of the nth

Order.

The number of terms in the expanded form of a determinant of the nth

order is [n (§ 279).

291. The elements lying in the diagonal joining the upper
left-hand to the lower right-hand corner, of a determinant, are

said to be in the princijial diagonal; the term whose factors are

the elements in the principal diagonal is always positive.

P

292. It may be shown that the definition of § 290 agrees

with that of § 287.

For consider the determinant

a
l, 1> a

\, 2)
a

\, 3

a
2, 1? ®>2, 2? ^2, 3

%, 1) ^3, 2? #3, 3

The products of the elements taken three at a time, subject to the

restriction that each product shall contain one and only one element

from each row, and one and only one from each column, the first

suffixes being written in the order 1, 2, 3, are

0\, 1 #2, 2 #3, 3? #1, 1 #2, 3 «3, 2, (L\, 2 0>2, 1 #3, 3? #1, 2 #2, 3 #3, 1? #1, 3 #2, 1 #3, 2>

and «i,3 a2
,
2 #3, i-

In the first of these there are no inversions in the second suffixes ;
in

the second there is one, 3 before 2
;
in the third there is one

;
in the

fourth, two
;
in the fifth, two

;
in the sixth, three.

Then by the rule of § 290, the first, fourth, and fifth products are

positive, and the second, third, and sixth are negative ;
and the ex-

panded form is

0\, 1 0,2, 2 053, 3
—

&1, 1 0,2, 3 #3, 2
—

#1, 2 #2, 1 0%, 3 + Q>\, 2 &2, 3 <fe, 1

+ «1, 3 02, 1 O3, 2
~

«1, 3 02, 2 «3, U

which agrees with § 287.
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293. The expanded form of the determinant (1), § 290, may
also be obtained by writing the second suffixes in the order

1, 2, 3, •••, n, and making each product -for - according

as the number of inversions in the first suffixes is even or

odd.

For let the absolute value of any term, obtained by the rule of § 290, be

«i,p «2,« ••• an, r ; (1)

where p, q, •••, r is a permutation of 1, 2, ••-, n.

This is obtained from the first term

«1,1 <*2,2
-•

«»,n (2)

by changing second suffixes, 1 to p, 2 to g,
•

Since j», q,
•

••, r is a permutation of 1, 2,

,
n to r.

., ?i, (2) may be written

... ar,

and (1) may be obtained from this by changing first suffixes, p to 1, q to

2, ••., r to n.

In these two ways, we have the same number of interchanges

of two suffixes, and hence the term (1) will have the same sign.

PROPERTIES OF DETERMINANTS

294. A determinant is not altered in value if its rows
are changed to columns, and its columns to rows.

Consider the determinants

«i,i>

*2, 1> ^2, 2?

H %
n

-% n

x
n, 1)

and
a

i, 2?

tt
», 1

««,2

l
2, nj

Since the second suffixes of the first determinant arc tlic

same as the first suffixes of the second, if the first determinant

be expanded by the rule of § 290, and the second by the rule

of § 293, the results will be the same.

Therefore the determinants are equal.
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295. A determinant is changed in sign if any two con-
secutive rows, or any two consecutive columns, are
interchanged.

Consider the determinants

a b c
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297. Cyclical interchange of rows or columns.

By n — 1 successive interchanges of two consecutive rows, the

first row of a determinant of the nth order may be made the last.

Thus, by § 295, the determinant

a2,
b<

is equal to (— l)
n

an,

The above is called a cyclical interchange of rows.

In like manner, by n — 1 successive interchanges of two con-

secutive columns, the first column of a determinant of the nth

order may be made the last.

298. If two rows, or two columns, of a determinant
are identical, the value of the determinant is zero.

Let D be the value of a determinant having two rows, or two columns,

identical.

If these rows, or columns, are interchanged, the value of the resulting

determinant is - D (§ 296).

But since the rows, or columns, which are interchanged are identical,

the two determinants are of equal value.

Hence, D — — D
;
and this equation cannot be satisfied by any value

of D except 0.

Ex. Evaluate the following determinant :

a a d

= abk 4- bed 4- cea — cbd — abk — ace.

= 0.

299. If each element in one column, or in one row, is

the sum of m terms, the determinant can be expressed
as the sum ofm determinants.

Consider the determinant

a
2, 1>

a
2, r)

(1)

<ln a
n, r)
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Let each element in the rth column be the sum of m terms, as follows:

ahr = hi + ci+ ••'• +/i,

«2,r = fo + C2 + '•• +/2,

Let «i, ?,

then «i,

a,

an,r= K + Cn + ••• +/„.

g,r
•••

«n,« be the absolute value of one of the terms of (1);

(in (in, (ihp ••• (bq + cq = ••• + /g) ...
a„, 8

It is evident from this that the determinant (1) can be expressed as

the sum of the determinants

«2, 1,

hi #1, n

<t2,n

bn , On,

+ "• +

01, I1 fu

/11

#1,n

«2,n

«n, 1, Jni a», n

300. If all the elements in one column, or in one row,
are multiplied by the same number, the determinant is

multiplied by this number.

Consider the determinant

a
2, i> ;

"1, r>

a
2, rl <Xo

a n,ly '"> 8*»rj
"" an,

Multiplying each element in the rth column by m, we have

«i,i, •••, mai,n *-i «i,

«2,1, ma2,r, «2,

(i)

(2)

Let «iiP
••• ag ,

r
••• a n , s be the absolute value of one of the terms of (1).

Replacing aq , r by ma
q> ,.,

the absolute value of the corresponding term

of (2) is mai, p
••• aq>r •••

«»,«•

It is evident from this that the determinant (2) equals m times the

determinant (1).

Ex. Consider the values of

9
h .

k
•

Evaluating, m(aek -f- bfg + chd — ceg
— dbk — afh) and

maek+ mbfg+ mchd — mceg — dmbk —mafli, which are identical.

a
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301 . If all the elements in any column, or row, be mul-

tiplied by the same number, and either added to, or sub-

tracted from, the corresponding elements in another
column, or row, the value of the determinant is not

changed.

Let the elements in the rth column of the following deter-

minant be multiplied by m, and added to the corresponding

elements in the qth column.
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obtained by erasing the second and fourth rows, and the second and
third columns.

303. To find the coefficient of a
lt x in the determinant

^2,1? tt
2, 2> ***j ^2, n

(1)

By § 290, the absolute values of the terms which involve

ah x
are obtained by forming all possible products of the ele-

ments taken n at a time, subject to the restrictions that the

first elements shall be ah x and that each product shall contain

one and only one element from each row except the first, and
one and only one from each column except the first.

It is evident from this that the coefficient of ah j in (1) may
be obtained by forming all possible products of the following
elements taken n — 1 at a time,

^2,2? ^2,3? '"> ®2,n

a
3, 2?

a
3, 3> ***? a

3, n

subject to the restriction that each product shall contain one
and only one element from each row, and one and only one from
each column, writing the first suffixes in the order 2, 3,

•

•, n,

and making each product + or — according as the number of

inversions in the second suffixes is even or odd.

Then by § 290, the coefficient of a
lt x is

Ojo o
j ^2 3?

* *

*? ^2 n

tt
3, 2) a

3, 3> "'J a3,n

that is, the minor obtained by erasing the first row and the

first column of the given determinant.
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304. By aid of § 303, a determinant of any order may be

expressed as a determinant of any higher order.

1, 0, 0, 0,

Thus,
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By k — 1 interchanges of consecutive rows, and r — 1 interchanges of

consecutive columns, the element a&, r may be brought to the upper left-

hand corner.

Thus, by § 295, the determinant equals

Then, by § 303, the coefficient of aA ,
r is

(_ 1)*+r-2

$n, 1» ***? ^n, n

But (_ l)*+r-2
- (_ !)t+r +(_ 1)«= (_ 1)

fc+r

Hence, the coefficient of the element in the ftth row

and rth column equals (— l)*
+r

? multiplied by the minor of

(4) which is obtained by erasing the Zcth row and rth

column.

306. By aid of § 305, a determinant of any order may
be expressed in terms of determinants of any lower

order.

Thus, since every term of a determinant contains one and only one

element from the first row, we have,

au &i, ci, di

#2? &2> Cli d'l

«3, 63, c3 , dj

#4, 64, C4, C?4

|&2»
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307. Evaluation of Determinants.

The method of § 306 may be used to express a determinant

of any order higher than the third in terms of determinants of

the third order, which may be evaluated by the rule of § 290.

The theorem of § 301 may often be employed to shorten the

process.

i. Evaluate

Subtracting the first row from the last, twice the first row from the

second, and three times the first row from the third (§ 301), the determi-

nant becomes

5,
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The artifice used in the following example is often of use in

evaluation of determinants :

2. Evaluate

x"

f
z
3

If x be put equal to ?/, the determinant has two rows identical, and

equals zero (§ 298).

Then, as — y must be a factor (§ 105) ;
and in like manner, y — z and

z— x are factors.

Let the given determinant = X (x — y) (y
—

z) (z
—

x).

To determine X, we observe that as, ?/, and z are factors of the deter-

minant
; then, Xmust equal xyz, as it is evident by noticing that the first

term in the expanded form is + xy
2zs

,
and the value of the determinant is

xyz{x -y)(y — z) {z — x).

EXERCISE 73

Evaluate the following :

8, 24, 16

3,

21,

12,

14,

30,

41,

16, 39,

13, 14,

14,

15,

15,

13,

15

26

6

7

8

15

13

14

4-

5-

a-f by

b+c,
o +a,

y,

a,

h
c>

1

1

1

7.

x,

4,
y>

-T,

6,

6. 3,

6,

Plot this line (§51).

y = 5, and as = 6, y

4,

2/,

12,

= 0.

= 0.

Are the points x — —
4, ?/ = —

7,

and as = 8, ?/
= 6, on this line?

8.

15, 12, 11,

14, -4, -8,

16, 10, -2,

10, 12, 3,

6

25

5

6

9-

io.

Are the points x = 3,

= —
12, on this line?

0, 0, 3

7,



226 ALGEBRA



DETERMINANTS 227

Find the equations of the lines passing through the following

points :

18. as = 1, y = 3; #=— 2, y s4
19. x = 0, y = 8

;
x = 8, y = 0.

20. # = — 1, 2/
= 2

;
a? = 3, y = — 1.

308. Let Ar ,
Bn •

••, iTr ,
denote the coefficients of the ele-

ments a,., br , •••, kr, respectively, in the determinant.

hi ^1?

Kq

K, "n

(1)

Then, since every term of the determinant contains one and

only one element from the first column, the value of the

determinant is

A1a 1 + A2a2 -\-
••• + Anan .

In like manner, the value of the determinant also equals

, BA + B2b2 + . .. + BHbn,
• •

•, KJh + KM2 + • • . 4- &Jc*

309. If m
lf
m2 ,

•
••, mn are the elements in any column of the

determinant (1), of § 308, except the first,

A^in^ + A2m2 -+-
• • • -f Anmn

is the value of a determinant, which differs from (1) only in

having m1?
m2 , •••, mn instead of alt a2, •••, an as the elements in

the first column.

Then A1m1 + A2m2 -f ••• + Anmn = ;

for it is the value of a determinant which has two columns

identical.

In like manner, if m1? ra2, •••, mn are the elements in any
column of the determinant (1), except the second, ^

Bim^ + B2m2 + • • • + 5nmn
=

;

and so on.
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SOLUTION OP EQUATIONS

310. Let it be required to solve the following system of n

linear, simultaneous equations, involving n unknown numbers :

0&1 +
+ q&r +

+ hxH
= plm

la„a1 + ••• + q,flr+ •• 4-&A=2>„.

(1)

(2)

(3)

Let Qu Q2 ,

•

••, Qn denote the coefficients of the elements #i, q2 , •••, qn

respectively, in the determinant

D--
Q2, »j k2

•j kn

Multiplying equations (1), (2), ..., (3) by §b Q2 ,
•

•, Qm respectively,

and adding, we have

xiiQiai + Q2a2 + ••• + Qnan) + •••

+ Xr{Qiqi + §2^2 + ••• + Qnqn) + •"

+ xn(Qiki + Q2k2 + -. + Qnkn) = QiPi + Q2p2 + + §nPn.

By § 309 the coefficient of each unknown number, except xr ,
is zero.

By § 308, the coefficient of xr is D ; also, the second member is the

value of a determinant which differs from D only in having pi, p2 , •••» Pn
instead of qu q2 , •••, qn as the elements in the rth column

; denoting the

latter by Dn we have

xrD = Dr ,
and xr =

I)

311. i£#. Find the value of y from the equations

(3x-5y + 7z = 28.

i2a + 6</-9z=-23.
[4:X -.2y-5z= 9.

The denominator of the value of y is the determinant

3,-5, 7

2, 6,-9
4, -2, -5
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The numerator is obtained by putting for the second column the second

members of the given equations.

Therefore,

3,
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XIV. THEORY OF EQUATIONS

312. Every equation of the nth degree, with one unknown

number, can be written in the form

xn 4- PjZ"-
1

+p»x
n-2 + ••• +pn-iX +pn = ; (1)

where the coefficients may be positive or negative, integral or

fractional, rational or irrational, real or imaginary, or zero.

If no coefficient equals zero, the equation is said to be Com-

plete; otherwise it is said to be Incomplete.

We shall call (1) the General Form of the equation of the nth

degree.

313. We assume that every equation of the above form has

at least one root, real or imaginary.

314. Divisibility of Equations.

It follows, from § 105, that if the equation

Xn +p^-1 + • • • +Pn-1% +Pn =

has a as a root, then the first member is divisible by x — a.

For, if a is a root, the first member becomes when x is put

equal to a.

315. (Converse of § 314.) If the first member of the equation

xn + ppf*
1 + — + Pn-l® + Pn =

is divisible by x — a, then a is a root of the equation.

For since the first member of the given equation is divisible

by x — a, the equation may be put in the form

(*-a)Q= 0;

and it follows from § 110 that a is a root of this equation.

It follows from the above that if the first member of

IW? + Pi&~
l + •" +Pn-lX+Pn =

is divisible by ax+ 6, then is a root of the equation.
a
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316. Number of Roots.

An equation of the nth degree has n roots, and not
more than n.

Let the equation be

Xn +pYX
n-^ +p2X

n~2
H hPn-lX +Pn = 0. (1)

By § 313, this equation has at least one root.

Let a be this root; then, by § 314, the first member is divis-

ible by x — a, and the equation may be put in the form

(x-a)(x
n^+q2x

n-2+ ... + q
n~ lx+qn)

== 0.

By § 110, the latter equation may be solved by placing

x — a = 0,

and x"-1+ q>x
n~2

H \-q n_xx+qn
= 0. (2)

Equation (2) must also have at least one root.

Let b be this root
;
then (2) may be written

(x-b) (x
n~2 + r3x

n~s + • • • + *Li? + rn) = 0,

and the equation may be solved by placing

x - b = 0,

and xn~2
-f rsx

n~3
-\ h rn xx + rn = 0.

After Ti — 1 binomial factors have been divided out, we shall

arrive finally at an equation of the first degree,

x — 7c =
; whence, x = 7c.

Therefore, the given equation has the n roots a, 6,
• •

•,
7c.

The roots are not necessarily unequal.
m

Ex. x3 - 3 x2 + 3 x - 1 = 0.

Whence, (x - l)(x
-

l)(x
-

1)
=

and x = l, or 1, or 1.
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317. Depression of Equations.

It follows from § 316 that, if m roots of an equation of the

nth degree are known, the equation may be depressed to an-

other equation of the (n
— m)th degree, which shall contain the

other n — m roots.

Thus, if all but two of the roots of an equation are known,

these two may be obtained from the depressed equation by the

rules for quadratics.

Ex. Two roots of the equation 9 x4— 37 x2 — 8 x + 20 = are

2 and — f ;
find the others.

By § 314, the first member of the given equation is divisible by

(a- 2) (3« + 5), or Sx2 - x - 10.

Dividing 9 x4 — 37 x2 — 8 x + 20 by 3 x2 — x — 10, the quotient is

3x2 + x-2.
Then the depressed equation is

3 x2 + x - 2 = 0.

Solving by the rules for quadratics, x = } or — 1.

EXERCISE 75
Find whether :

i. One root of ar
3 — x2 — 32 x + 60 = is 5; if so, find the

others.

2. One root of 2 a? - 6 x2 - 2 x + 6 = is 3
;

if so, find the

others.

3. Two roots of 4 x4 - 12 x3 - 13 x2 + 45 x - 18 = are - 2

and 3 respectively ;
if so, find the others.

4. One root of 3 Xs — 5 x2 + 2 x — 4 = is 2
;

if so, find the

others.

5. Two roots of 14 a4 + 65 ar* - 222 x2 + 65 x + 14 = are 2

and — 7
;

if so, find the others.

6. Two roots of x4 + 4 xs - 6 x2 + 24 x - 72 = are - 6 and

2; if so, find the others.

7. Two roots of x4 — 4 Xs+ 3 x2 + 4 a; — 4 = are 2 and — 1
;

if so, find the others.



THEORY OF EQUATIONS 233

8. Three roots of 2 x* + 29 x4 + 1*8 or
3 + 379 a;

2 + 394 x + 120

= are — 2,
—

3,
— £ j

if so, find the others.

9. Two roots of a*
4 + 12 a8 + 34 x2 - 12 x - 35 = are 1 and

— 7
;

if so, find the others.

10. Two roots of 5 x* - 18 a)
3 +72z - 120 = are 5 and - 4

;

if so, find the others.

318. Formation of Equations.

It follows from § 316, that if the roots of

xn +pxx
n~ l

-\ t- Pn_lX +Pn =zO

are a, b, •••, k, the equation may be written in the form

(x
—

a)(x
—

b)
• • • (x — k)

= 0.

Hence, to form an equation which shall have any required

roots,

Subtract each root from a?, and place the product of
the resulting expressions equal to zero.

Ex. Form an equation having the roots 1, i, and — f.

By the rule (x- l)(x -DO + }) = 0.

Multiplying the terms of the second factor by 2, and of the third by 3,

(x-l)(2z-l)(3£ + 5) =0.

Expanding, 6x3 + %2 — 12 x + 5 = 0.

EXERCISE 76

Form equations having the roots :

I- 1,-4,6. 7 . _ m) m±v^.
2. 3,-1,-21

4

3-2,3,5,0.
8. 3±V2,-3 ± V2.

4. -1,-2,7,-8. 9- «, -~>- &
>-J-

5- 2, 9,
-

J, |. ^ 4±2V3 -2±V3
6. 4,4, -I, -£. 3

'

3
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319. Composition of Coefficients.

By § 318, the equation of the nth degree whose roots are a,

b, c, d,
•

••, ft, Z, m, is

(x — a)(x
—

b)(x
—

c)(x
—

d)
•••

(x
— m)= 0. (1)

By actual multiplication, we obtain

(x — a) (x
—

b) — x2 —
(a + b)x + ab ;

(x — a) (x
—

b) (x
—

c)

= x* — (« + & + c)x
2 + (ab -f be -f ca)x — a&c

;

(#
—

a) (x
—

6) (x
—

c) (x — d)

= xi —(a + b + c + d)x* -f (a& + ac+ ad + bc + bd + cd)x
2

— (abc + abd + aceZ + 6cd)x + abed =
;
etc.

When all the factors of the first member of (1) have been multiplied

together, the result will be in the form

xn -\-piX
n~ l + p2xn

- 2 + p3xn
- s

-f ••• +pn ;

where pi = - (a + b -f c + ••• + k + I -f m) ;

p2 = ab + ac + 6c + • • • -f Zm ;

p3 = — (abc + «6c? + acd + ••• + Mm);

pn = ± abed ••• klm, according as n is even or odd.

Hence, in an equation of the nth degree in the general form,

The coefficient of the second term is equal to minus
the sum of all the roots.

The coefficient of the third term is equal to the sum of
the products of the roots, taken two at a time,
The coefficient of the fourth term is equal to minus the

sum of the products of the roots, taken three at a time ;

etc.

The last term is equal to plus or minus the product of
all the roots, according as n is even or odd.

320. It follows from § 319 that, if an equation of the nth

degree is in the general form,

If the second term is wanting, the sum of the roots is 0.

If the last term is wanting, at least one root is 0.
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If the last term is an integer, it is divisible by every integral

root.

EXERCISE 77

In each of the following, find the sum of the roots, and the

product of the roots :

i. xz -Sx2 + l§x-12 = b. 2. ar
3 - 31 x- 30 = 0.

3. 4^-12^ + 3^ + 13^-6=0.

321. If all but one of the roots of an equation of the ?ith

degree in the general form are known, the remaining root may
be found by changing the sign of the coefficient of the second

term of the given equation, and subtracting the sum of the

known roots from the result
; or, by dividing the last term of

the given equation if n is even, or its negative if n is odd, by
the product of the known roots.

If all but two are known, the coefficient of the second term

of the depressed equation may be found by adding the sum of

the known roots to the coefficient of the second term of the

given equation ;
and the last term of the depressed equation

may be found by dividing the last term of the given equation

by plus or minus the product of the known roots according as

n is even or odd.

Ex. Two roots of the equation 9 xA — 37 x2 - 8 a; + 20 =
are 2 and — f ;

what are the others ?

We first put the equation in the general form by dividing each term

by 9.

It then becomes sc* - -3/ x2 —
§ x + ^ = 0.

Since there is no sc
3
term, the coefficient of the second term is 0.

Then the coefficient of the second term of the depressed equation is

+ 2 - § or 1

The coefficient of the last term of the depressed equation is

Solving, x = § or — 1.
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EXERCISE 78

i. One root of x3 + 7 x2 — 5x — 75 = is — 5
;
find the others.

2. Three roots of 4 a;
4 — 55 x2 — 45 #+ 36 = are 4, —3, \\

find the other.

3. Four roots of 20 x5 - 108 x4 + 225 or
3 - 224 x2 + 105 a - 18

= are 1, 1, -§, f ;
find the other.

4. Three roots of or
5 - a4 - 15 Xs + 25 ar> + 14 x - 24 = are 2,

1,
— 4

;
find the others.

5. Two roots of x* - ax* + (2 a - 7 a2 -
l)rf + (a

3 - 2 a2 + a)*

+ 6 a4 — 12 a3+ 6 a2= are a — 1 and 3 a; find the others.

322. Fractional Roots.

An equation in the general form with integral coeffi-

cients cannot have as a root a rational fraction in its

lowest terms.

Let the equation be

xn +p 1af
t~ 1 +p2x

n 2
H VPn-l* +Pn = 0,

where pl9 p2,
'"

} pn are integral.

If possible, let -, a rational fraction in its lowest terms, be a root of
b

the equation ; then,

Multiplying each term by 6n_1
,
and transposing,

b

By hypothesis, a and b have no common divisor
; hence, an and b have

no common divisor.

We then have a rational fraction in its lowest terms equal to an integral

expression, which is impossible.

Therefore, the equation cannot have as a root a rational fraction in its

lowest terms.
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323. Imaginary Roots.

If the imaginary number a + hi is a root of an equation
in the general form, with real coefficients, its conjugate
(a -

bi) is also a root.

Let the equation be

Xn +plX
n-l + . . . +pn_lX +pn = 0, (1)

where p1? •••, pn are real numbers.

Since a + bi is a root of (1), we have

(a + bi)» + pi(a + bi)"-
1 + •- +Pn-i{a+bi) + pn = 0.

Expanding by the Binomial Theorem, we have, by § 180,

an + nan-m _ riin-J^ %2_ n(n - l)(n - 2) _
[2 >(S

+ pjan~l + (n- \)a-m - ^
-

*) 0*
-

2) aW_3&2 1

+ ...

+j£»-i(a + 50 +pw = 0. (2)

Collecting the real and imaginarj^ terms, we have a result of the form

P+Qi = 0. (3)

Here, P stands for the sum of all the terms containing a alone, together

with all the terms containing even powers of i
;
and Qi for all terms

containing odd powers of i.

In order that equation (3) may hold, we must have

P = 0, and Q = 0.

Now substituting a — bi for x in the first member of equation (1),

it becomes

(a
- 60" +Pi(a - bi)*-

1 + - +pn-i(a
-

bi) fpn. (4)

Expanding by the Binomial Theorem, we shall have a result which

differs from the first member of (2) only in having the second, fourth,

sixth, etc., terms of each expansion, or those involving i as a factor,

changed in sign.

Then, collecting the real and imaginary terms, the expression (3) is

equal to p _ q^

where P and Q have the same meanings as before.

But since P = and Q *= 0, we have P— Qi =s 0.

Whence, a — bi is a root of (1). *•

The above proof holds without change when a equals zero
;
thus the

theorem holds for any pure imaginary number, of the form bi.
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324. The product of the factors of the first member of

equation (1), § 323, corresponding to the conjugate imaginary
roots a+bi and a — bi is

[x
_ (a + bi)J_x

-
(a-bi)-] (§ 318)

= (x — a — bi)(x
— a + bi)

= (x- a)
2 -

(bi)
2 = (x

-
a)

2+ b2

;

and is therefore positive for every real value of x.

325. It follows from §§ 316 and 323 that every equation of

odd degree has at least one real root
;
for an equation cannot

have an odd number of imaginary roots.

TRANSFORMATION OF EQUATIONS

326. To transform an equation into another which shall have

the same roots with contrary signs.

Let the equation be

xn +Pif
l +p2x

n~2 + ••• + Pn-iX +pn = 0. (1)

Substituting — y for as, we have

(- y)
n +pi(- y)

71
- 1 +m- y)

n~2 + - +p»-i(- y) +pn = o.

Dividing each term by (— 1)
M

,
we have

Or, yn_ piy
n-l + p2yn-2 ± Pn-l2/ T Pn = J (2)

the upper or lower signs being taken according as n is odd or even.

It follows from (1) and (2) that the desired transformation

may be effected by simply changing the signs of the alternate

terms commencing with the second.

If the equation is incomplete., any missing term must be supplied with

the coefficient zero before applying the rule.
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327. Ex. Transform the equation a;
3 — 10 x + 4 = into

another which shall have the same roots with contrary

signs.

The equation may be written xs + • x2 — 10 x + 4 = 0.

Then, by the rule, the transformed equation is

X3_ .x2 - 10x-4 = 0, or x3 -10x-4=0.

EXERCISE 79

Transform each of the following into an equation which

shall have the same roots with contrary signs :

i. xs -.6x2 + 12x-8 = 0. 2. x*-6x3 + ±x2 -9x + 16 = 0.

3. x7 + 5x5 — 3xi + x — 4: = 0.

328. To transform an equation into another whose roots shall

be respectively m times those of the first.

Let the equation be

Xn +^>1X
n~1

-\-p2X
n~ 2 + • • • +Pn-iX +pn= 0.

Putting mx = y, that is,
2- for x, we have
m

+ Pn = 0.

Multiplying each term by mn
,

y
n
-\-pi

imyn-1
-\-p2m2

y
n-2 + ... +pn-\mn

-l
y + pnmn = 0.

Hence, to effect the desired transformation, multiply the

second term by m, the third term by m2

,
and so on.

' Ex. Transform the equation Xs
-\-7 x

2 — 6 = into another

whose roots shall be respectively 4 times those of the first.

Supplying the missing term with the coefficient zero, and applying the

rule, we have

x3 + 4 . 7 x1 + 4* • Ox - 4« • 6 = 0, or x3 + 28 x2 - 384 = 0.



240 ALGEBRA

329. To transform an equation with fractional coefficients into

another whose coefficients shall be integral, that of the first term

being unity.

The transformation may be effected by transforming the

equation into another whose roots shall be respectively m
times those of the first (§ 328) ;

we then give to m such a

value as will make every coefficient integral.

By giving to m the least value which will make every coeffi-

cient integral, the result will be obtained in its simplest form.

Ex. Transform the equation Xs — = into an-H
3 36 108

other whose coefficients shall be integral, that of the -first term

being unity.

By § 328, the equation

^."V-^ +^O
3 36 108

has its roots respectively m times those of the given equation.

It is evident, by inspection, that the least value of m which will make

every coefficient integral, is 6.

Putting m = 6, we have

xs _ 2 x2 - x + 2 = 0,

whose roots are 6 times those of the given equation.

330. To transform an equation into another whose roots shall

be respectively those of the first increased by m.

Let the equation be

xn + Plx
n~ l + . • • +pn_ x

x +pH = 0. (1)

Putting x -f m = y, that is, y — m for x, we have

(y
— m)n +pi(y — m) n-l + \-Pn-i(y

— m)+pn = 0. (2)

Expanding the powers of y — m by the Binomial Theorem, and collect-

ing the terms involving like powers of y, we shall have a result of the

yn + qiy
n-i

_|_
.. .

_+_ qn_iy + Qn = o, (3)

whose roots are respectively those of the given equation increased by m.
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Ex. Transform the equation or
3 — 7 # -f 6 = into another

whose roots shall be respectively those of the first increased by 2.

Substituting y — 2 for cc,

(j/-2)3-7G,-2) + 6 = 0.

Expanding, and collecting the terms involving like powers of y, we
have

y8-6y* + 6y + 12 = 0.

331. If m and the coefficients of the given equation are

integral, the coefficients of the transformed equation may be

conveniently found by the following method.

Putting x + m for y in (3), we obtain

(x + m) n + qi (x + m)» * + ••• + g„_i(x + m) + qn = 0, (4)

which must, of course, take the same form as (1) on expanding the

powers of x + m, and collecting the terms involving like powers of x.

Dividing the first member of (4) by x + w, we have

(x + m)"-
1 + q x (x + m)»-a

-f .-. +q*-% C* + w) + g„_i (5)

as a quotient, with a remainder qn .

Dividing (5) by x + m, we have the remainder qn-i; etc.

Hence, to obtain the coefficients of the transformed equation :

Divide the first member of the given equation by
oo + m ;

the remainder will be the last term of the required
equation.
Divide the quotient just found by oc+ in

; the remainder
will be the coefficient of the next to the last term of the
transformed equation ; and so on.

Ex. Transform the equation sc
3— 7#4-6 = into another

whose roots shall be respectively those of the first increased by 2.

Dividing xs — 7 x + 6 by x + 2, we have the quotient x2 — 2 x — 3, and

the remainder 12 (§ 108).

Dividing x2 — 2 x — 3 by x + 2, we have the quotient x — 4, and the

remainder 5. N

Dividing x — 4 by x + 2, we have the remainder — 6.

Then, the transformed equation is

X3_6x2 + 5x + 12 = 0.

Compare Ex., § 330.
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332. To transform an equation into another whose roots

shall be those of the first diminished by ra, we change y — m to

y -\-m in the method of § 330, and x -f- m to x — m in the rule

of § 331.

EXERCISE 80

i. Transform x2 — x — 12 = into an equation whose roots

shall be, respectively, 5 times the first. Verify your results.

2. Transform ar
3
-f- x

2 — 14 x — 24 = into an equation whose

roots shall be, respectively, twice those of the first. Verify
results.

3. Transform x^-^Sx
2— 23 x — 210 = into an equation

whose roots shall be, respectively, \ times the first.

Transform each of the following into an equation with in-

tegral coefficients, that of the first term being unity :

4. 6 or
3 -11 x2 -14 a;+ 24 = 0. Verify result.

5. 8x* + Ux2 -5x-2 = Q.

6. 2a4 -13ar3 -91arJ + 390a + 216 = 0.

7. 90^-flll^+ 25^2 -12cc-4 = 0.

8. xA +— -—-— = 0.

7 14 196

9. Transform a^-f-lO x2 + 7 x— 18 = into an equation whose

roots shall be, respectively, those of the first diminished by 4.

10. Transform x* - 3 Xs — 19 x2 + 27 x + 90 = into an equa-
tion whose roots shall be, respectively, those of the first in-

creased by 3.

333. To transform the equation

xn +p1
xn

~ 1
-\ f-pn_iX -f pn =

where pl is not zero, into another whose second term nkatt be

wanting.
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Expanding the powers of y — m in the first member of (2),

§ 330, and collecting the terms involving like powers of y, we
have

y
n + (l\

—
mn)y

n~ l

-\
= 0.

If m be so taken that pY
— mn = 0, whence m = —

,
the coeffi-

n
cient of y

n~^ will be zero.

Hence, the desired transformation may be effected by sub-

stituting in the given equation y — -in place of x.

Ex. Transform x5 — 6x2 + 9 x — 6 = into an equation whose

second term shall be wanting.

_ ft

Substituting y or y + 2, in place of x, we have
o

(?/ + 2)»
_ 6 (y + 2)2 + 9 (y + 2)

- 6 = 0.

Then, y
s + 6 y* + 12 y + 8 - 6 ?/

2 - 24 y - 24 + 9 y + 18 - 6 = 0,

or y
3 — 3 y — 4 =

;

whose roots are those of the given equation diminished by 2.

EXERCISE 81

Transform each of the following into, an equation whose

second term shall be wanting :

i. ^-6a2 + 4a-l=0. 3. x4+ 12 ^+2^-3 = 0.

2. x3 + 5x2 + 8 = 0. 4. x5 -xi + 7x-l = 0.

DESCARTES' RULE OF SIGNS

334. If an equation of the nth degree is in the general form

(§ 312), a Permanence of sign occurs when two successive terms

have the same sign, and a Variation of sign occurs when two

successive terms have opposite signs.

Thus, in the equation xG — 3 x4 — Xs
-f 5 x+ 1 = 0, there are

permanences and two variations.,
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335. Descartes' Rule of Signs.

No equation, whether complete or incomplete, can
have a greater number of positive roots than it has
variations of sign ;

and no complete equation can have
a greater number of negative roots than it has perma-
nences of sign.

Let an equation in the general form have the following signs :

+ + - + 00
,

the missing terms being supplied with zero coefficients.

If we introduce a new positive root a, we multiply this by x — a (§ 318) ;

writing only the signs which occur in the process, we have

123456789
+ +0-+00-- (1)
+ -

+
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If, then, we form the product of all the factors correspond-

ing to the negative and imaginary roots of an equation, multi-

plying the result by the factor corresponding to each positive

root introduces at least one variation.

Hence, the equation cannot have a greater number of posi-

tive roots than it has variations of sign.

To prove the second part of Descartes' Rule, let — y be sub-

stituted for x in any complete equation.

Then since the signs of the alternate terms commencing
with the second are changed (§ 326), the original permanences
of sign become variations.

But the transformed equation cannot have a greater number

of positive roots than it has variations.

Hence, the original equation cannot have a greater number

of negative roots than it has permanences.

In all applications of Descartes' Rule, the equation must contain a

term independent of x
;
that is, no root must equal zero

;
for a zero root

cannot be regarded as either positive or negative.

336. It follows from the last part of § 335, and from § 326,

that in any equation, whether complete or incomplete, the

number of negative roots cannot exceed the number of varia-

tions in the equation which is formed from the given equation

by changing the signs of the alternate terms commencing with

the second.

337. In any complete equation, the sum of the number of

permanences and variations is equal to the number of terms

less one, or to the degree of the equation.

That is, the sum of the number of permanences and varia-

tions is equal to the number of roots (§ 316).

Hence, if the roots of a complete equation are all real, the

number of positive roots equals the number of variations, and the

number of negative roots equals the number of permanences.

An equation whose terms are all positive can have »o posi-

tive root
;
and a complete equation whose terms are alternately

positive and negative can have no negative root.
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338. Ex. Determine the nature of the roots of

x3 + 2 x + 5 = 0.

There is no variation, and consequently no positive root.

Changing the signs of the alternate terms commencing with the second,
we have xs + 2 x - 5 = 0.

. (See Note, § 326. )

Here there is one variation
;
and therefore the given equation cannot

have more than one negative root (§ 330).

Then since the equation has three roots (§ 316), one of them must be

negative and the other two imaginary.

If two or more successive terms of an equation are wanting, it follows

by Descartes' Rule that the equation must have imaginary roots.

EXERCISE 82

If the roots of the following are all real, determine their

SlgnS:
i. ^ + 10^ + 7^-18 = 0.

2. a4 -3ar3 -19#2 + 27a + 90=0.

3. 36x?-mxs + '27x2 + 7x-3 = 0.

4. ar
5-4a4 -5a3 + 20a;2 + 4a-16=0.

5. 2a4 -13arJ -91a2 + 390a+ 2iG = 0.

Determine the nature of the roots of the following :

6. 2^ + 0^+2^-12 = 0.

7. #4 + 3ar? + 7arJ + 6a; + 4 = 0.

8. a4-2^-9 = 0.

9. x>-2x4 + 4xs -8x2 + 16x-16=0.
io. x7 + 3 x4 + 5x2 + 2 = 0.

LIMITS TO THE ROOTS

339. To find a superior limit to the positive roots oj an

equation.

The following examples illustrate the method of finding a

superior limit to the positive roots of an equation.
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1. Find a superior limit to the positive roots of

x* - 3 x2 + 2 x - 5 = 0.

Grouping the positive and negative terms, we can write the first mem-
ber in the form

a*(a-3)+2(a:- J). (1)

It is evident that if x equals or exceeds 8, the expression (1) is positive

Hence, no root of the given equation equals or exceeds 3, and 8 is a

superior limit to the positive roots.

2. Find a superior limit to the positive roots of

a 4 -15 a2 - 10 a+ 24 = 0.

2 x^ x^We separate the first term into the parts -r- and —
,
and write the first

member in the form

/?*!_L5 xA +^_M)aA + 24, or ^(2 x2 - 45) + -(a* - 30) + 24.

It is evident from this that no root can be so great as 5
; hence, 5 is a

superior limit to the positive roots.

If we had written the first member in the form

^_ 15^2 \ + ht_ io x \ +24, or £-
2

(z
2 -

30) + -<>
3 -

20) + 24,'

we should have found 6 as a superior limit to the positive roots.

2 x4 sc
4

sc
4

sc
4

Thus, separating x4 into— and —
,
instead of — and —

, gives a smallerSo A A

limit.

340. To find an inferior limit to the negative roots of an

equation.

First transform the equation into another which shall have

the same roots with contrary signs (§ 326).

The superior limit to the positive roots of the -transformed

equation, obtained as in § 339, with its sign changed, will

be an inferior limit to the negative roots of the given equa-

ion.
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Ex. Find an inferior limit to the negative roots of

tf + 2 x* + 5 x2 - 7 = 0.

Transforming the equation into another which shall have the same

roots with contrary signs (§ 326), we have

xb + 2z3 -5z2
-f 7 = 0. (lj

We can write the first member in the form

x2
(x

3 -5) + 2z3 + 7.

It is evident from this that no root of (1) can be so great as 2
; hence,

— 2 is an inferior limit to the negative roots of the given equation.

By grouping the xb and x2 terms in (1), we obtain a smaller limit than

if we group the x3 and x2 terms.

EXERCISE 83

In each of the following, find a superior limit to the positive

roots, and an inferior limit to the negative :

,

i. ar
J + 3a2 + a~-4 = 0.

2 . xA + 5x*-15x-9 = 0.

3. x4 + 3x* -5 x -8 = 0.

4. 3x*-5x2 -8x-7 = 0.

5. ^-4a4 + 6ar3 + 32a2 __ 15^ + 3 = 0.

6. 2x5 + 5xi + 6xi -13x2 -25x + 4; = 0.

7. In the equation Xs — 2 x2 — 3a? + l = 0, prove 3 a supe-

rior limit to the positive roots, and — 2 an inferior limit to the

negative.

8. In the equation 2 a8 + 5 aj
2 — 7 x — 3 = 0, prove — 4 an

inferior limit to the negative roots, and find a superior limit to

the positive.

9. In the equation x4
-f 3 x* — 9 x2 + 12 x — 10 = 0, prove 3

a superior limit to the positive roots, and — G an inferior limit

to the negative.
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DERIVATIVES

341. If we take the polynomial

axn + bx"-1 + cxn
~ 2 + •••,

multiply each term by the exponent of x in that term, and

then diminish the exponent by 1, the result

naxn
~ l

-f (n — l)bx
n~2 + (n — 2)cx

n~z + ...

is called the first derivative of the given polynomial.
The first derivative of the first derivative is called the sec-

ond derivative of the given polynomial ;
the first derivative

of the second derivative is called the third derivative ; and
so on.

Ex. Find the successive derivatives of 3 Xs— 9 x2 — 12 x -f 2.

The first is 9 x2 - 18 x - 12.

The second is 18 x— 18.

The third is 18.

The fourth is 0.

It will be understood hereafter that when we speak of the derivative of

an expression, we mean the first derivative.

EXERCISE 84

Find the successive derivatives of :

i. 5x2 + $x-7. 4 8^ -3 a2 + 2.

2. 3^-7^ + 2. 5 . 6x6-5x5 + 4:Xs -3x2 + 27.

3. 9z3 -7a2 + 15a;-l. 6. x5- a? 4- 10 Xs + 5 x2 - 7 x.

MULTIPLE ROOTS

342. If an equation has two or more roots equal to a, a is

said to be a Multiple Root of the equation.

In the above case, a is called a double root, a tripte root, a

quadruple root, etc., according as the equation has two roots,

three roots, four roots, etc., equal to a.
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343. Let the roots of the equation

&+P&-*+&#*>+ -. +pn = (1)

be a, b, c, d, •••.

Then, by §> 318, we have

xn + piic"-
1 + P2Xn

~2 + ••• = (£-«)(£- &)(£ — c) •••.

Putting x + h in place of x, we obtain

(x + ft)" +pi(x + ft)*"
1 +p2(x + ft)

n~2 + •••

=
(ft + x - a) (ft + x - b)(h + x - c) •••. (2)

Expanding the powers of x + ft by the Binomial Theorem, the coeffi-

cient of h in the first member of (2) is

nxn~ l +pi(n — l)x
n~ 2 +p2 (n

- 2)x
n~s + •••

; (3)

which, we observe, is the first derivative of the first member of (1).

Again, it is evident from § 319 that the coefficient of h in the second

member of (2) is

(x — b) (x
—

c) (x
—

d) ••• to n — 1 factors

+ (x
— a)(x — c)(x

—
d)

••• to n — 1 factors

+ (x
—

a) (x — b) {x
—

d)
• • • to n — 1 factors + • •• . (4)

Since equation (2) is true for every value of ft, by § 264 these coeffi-

cients of ft in the two members are equal.

Now if b = a, that is, if equation (1) has two roots equal to «, every
term of (4) will be divisible by x — a, and therefore the expression (3)

will be divisible by x — a.

Hence, the equation formed by equating (3) to zero will have one root

equal to a (§ 315).

In like manner, if c = b = a, that is, if (1) has three roots

equal to a, the equation formed by equating (3) to zero will

have two roots equal to a
;
and so on.

Hence, if any equation of the form (1) has m roots

equal to a, the equation formed by equating to zero the
derivative of its first member -will have m — 1 roots equal
to a.

344. It follows from § 343 that, to determine the existence

of multiple roots in an equation of the form

PoX
n
+PlX

n- 1 + ••' +Pn-\X+Pn = 0,

we proceed as follows :
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Find the II. C. F. of the first member and its derivative.

If there is no H. C. F., there can be no multiple roots.

If there is a II C. F., by equating it to zero and solving the

residting equation, the required roots may be obtained.

It is to be observed that the number of times that each root

occurs in the given equation exceeds by one the number of

times that it occurs in the equation formed by equating the

H. C. F. to zero.

Ex. Find all the roots of

a5 +0* - 9 a? - 5a? + 16s + 12 = 0. (1)

The derivative of the first member is

5z4 + 4x3 -27x2 -10x4 16.

The H. C. F. of this and the first member of (1) is x2 — x — 2.

Solving the equation x2 — x — 2 = 0, x = 2 or — 1.

Then, the multiple roots of (1) are 2, 2,
—

1, and — 1.

Subtracting the sum of 2, 2,
—

1, and — 1 from —
1, the remaining

root is - 3 (§ 321).

EXERCISE 85

Find all the roots of the following :

2. x* + 6x3 -llx2 -60x + 100 = 0.

3. 9a?+ 105 a*+ 343 x+343 =0,

4. 4xi + 32xs + 63x2-8x-16 = 0.

5. af + brt-ll ar
3 - 49 a2 + 160 a; -100 = 0.

6. x4 + 3a?3 + 4a;2 + 3aj + l = 0.

345. The equation xn — a = can have no multiple roots
;

for the derivative of xn — a is nxn~ l

,
and xn — a and nx"' 1 have

no common factor except unity.

Hence, the n roots of xn = a are all different-

It follows from this that every expression has two'different

square roots, three different cube roots, and, in general, n dif-

ferent nth. roots.
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LOCATION OF ROOTS

346. If two real numbers, a and b, not roots of the

equation

^+^tt !+ .,.. +Pnlv+pn = 0, (1)

when substituted for a? in the first member, give results
of opposite sign, an odd number of roots of the equation
lie between a and b.

Let a be algebraically greater than b.

Let d,
•

••, g be the real roots of (1) lying between a and b, and h,
•

••, &,

the remaining real roots.

Let xn -f piX*~
l + ••• +i?n-]X +pn be denoted by X.

Then, by § 318,

Xr=(x-d) ... (x-g) -(x-h) .-. (*-*) Y; (2)

where F denotes the product of the factors corresponding to the imagi-

nary roots, if any, of (1).

Substituting a, and then &, for x in (2), the second member becomes

(a-d) ... (a-g)-(a-h) ••• ((*-*)• F, (3)

and (p- d)... (b-g).(b-h) - {b-k).Y"'y (4)

where Yf and y" denote the values of Y when sc is put equal to a and 6,

respectively.

Since a is greater than b, each of the numbers d, •••, g is less than a

and greater than b.

Whence, each of the factors a — d, •••, a — g is +, and each of the

factors b — d,
• •

,
b — g is — .

Again, since none of the numbers h, •••, k lie between a and 5, the

expression (a — K)
• • •

(a
—

k) has the same sign as the expression

(b-h) ... (b-k).

Also, y and Y" are positive ;
for the product of the factors corre-

sponding to a pair of conjugate imaginary roots of (1) is positive for every

real value of x (§ 324).

But by hypothesis, the expressions (3) and (4) are of opposite sign.

Hence, the number of factors b — d, •••, b — g -must be odd;

that is, an odd number of roots lie between a and b.

If the numbers substituted differ by unity, it is evident that the inte-

gral part of at least one root is known.
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Ex. Locate the roots of or
3
-j- x

2 — 6 x — 7 = 0.

By Descartes' Rule (§ 835), the equation cannot have more than one

positive, nor more than two negative roots.

The values of the first member for the values 0, 1, 2, 3,
—

1,
—

2, and
— 3 of x are as follows :

J5=0; -7. x = 2;— 7. a; = - 1
;
— 1. x = - 3

;
- 7.

x = l; -11. x = 3; 11. sc = - 2
;

1.

Since the sign of the first member is — when x = 2, and -f when x = 3,

one root lies between 2 and 3.

The others lie between — 1 and —
2, and — 2 and — 3, respectively.

In locating roots by the above method, first make trial of the numbers

0, 1, 2, etc., continuing the process until the number of positive roots de-

termined is the same as has been previously indicated by Descartes' Rule.

Thus, in the above example, the equation cannot have more than one

positive root
;
and when one has been found to lie between 2 and 3, there

is no need of trying 4, or any greater positive number.

The work may sometimes be abridged by finding a superior limit to

the positive roots, and an inferior limit to the negative roots of the given

equation (§§ 339, 340), for no number need be tried which does not fall

between these limits.

EXERCISE 86

Locate the roots of the following :

i. x? + 4:X2 -6 = 0. 5. x4 + 3x*-±x-l = 0.

2 . a?-7 x* + 6x + 5 = 0. 6. x4 + ar*-19 x2- 17 x + 1 = 0.

3. ^ + 3^-7^+ 2 = 0. 7- x4 -4x3 + 6 z-2 = 0.

4. f+ 4a;2 + «-3 = 0. 8. #4 - 7 ^ + # + 4 = 0.

9. Prove that the equation x4 — 5x?— 7 x — 2 = has one

root between 2 and 3, and at least one between and —1.

10. Prove that the equation x4 — 3 xP + x2 — 3 x — 4 = has

one root between and —
1, and at least one between 3

and 4.

11. Prove that the equation ar
? -

r-5a;-f-4 = has one root

between and — 1.
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347. The method of § 346 is not sufficient to deal with

every problem in location of roots.

Let it be required, for example, to locate the roots of

By § 325, the equation has at least one real root.

By Descartes' Rule, it has no positive root.

Putting x equal to 0,
—

1,
—

2,
—

3, the corresponding values

of the first member are 1, 1, 1, and — 5, respectively.

Then, the equation has either one root or three roots between
— 2 and — 3

;
but the methods already given are not sufficient

to determine which.

Sturm's Theorem (§ 350) affords a method for determining

completely the number and situation of the real roots of an

equation.

It is more difficult of application than the method of § 346,

and should be used only in cases which the latter cannot

resolve.

348. Graphical Representation.

The graph of an expression of higher degree than the sec-

ond, with one unknown number, may be found as in § 51.

Ex. Find the graph of

[f(
x)

. , x>- 2 x2 -2 z+ 3.

Put/O) = z3 - 2 x2 - 2 x + 3.

If 3=0, /(a) =3.

If x = l,/(x) = 0.

Ifx = 2,/(x) = -l.

If x = -2,/(x) = -9.

Ifx=-l,/(x)=2.
If x = 3,/(x) =6.

etc.

The graph is the curve ABC, which extends in either direction to an

indefinitely great distance from XX.
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349. Graphical Location of Roots.

The principle of § 220 holds for the graph of the first mem-
ber of an equation of higher degree than the second, with one

unknown number.

Thus, the graph of § 348 intersects XX' at x = 1, between

x = 2 and x = 3, and between x = — 1 and x = — 2.

And the equation Xs — 2 x2 — 2^+3=0 has one root equal

to 1, one between 2 and 3, and one between — 1 and — 2.

This may be verified by solving the equation ;
the factors of the first

member are x — 1 and x2 — x — 3.

This method of locating roots is simply a graphical repre-

sentation of the process of § 346, and is subject to the limita-

tions stated in § 347.

If the graph is tangent to XX', the equation has two or

more equal roots (compare § 220, Fig. 2) ;
if it does not inter-

sect XX', the equation has no real root.

The note to the example of § 346 applies with equal force to the

graphical method of locating roots.

EXERCISE 87

Locate the roots of the following graphically :

i. a^-3*— 1= 0. 4- x3 - 8 ^ + 19 a -12 = 0.

2. a4 + 2z2 + 3 = 0. 5 . aj
8 + 7aj2

4-14a? + 8 = 0.

3. ^-7ar9 + 12a-5 = 0. 6. x'-Sx2 - 2 x + 5 = 0.

350. Sturm's Theorem.

Let a^+jPi^-f ••• -fiV-i#+P» = (1)

be an equation from which the multiple roots have been re-

moved (§ 343).

Let xn -{-p^91" 1 + ••• +pn~ lx+pn be denoted by f(x), and let

f(x) denote the first derivative of f(x) (§ 341).

Dividing f(x) by f(x), we shall obtain a quotient #i> with

a remainder of a degree lower than that of fi(x).

Denote this remainder, ivith the sign of each of its terms
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changed, by f2(x) 9
and divide f(x) by f(x) 9

and so on
;
the

operation being precisely the same as that of finding the

H. C. F. of f(x) and fi(x) 9 except that the signs of the terms

of each remainder are to be changed, while no other changes
of sign are permissible.

'

Since, by hypothesis, fix) = has no multiple roots, f(x)

and fi(x) have no common divisor except 1 (§ 343) ;
and we

shall finally obtain a remainder/,^) independent of x.

The expressions f(x),f1(x) 9 f2(x), •••,/„(»), are called Sturm's

Functions.

The successive operations are represented as follows :

f(x) = Qlf(x)-f2(x) 9 (2)

fx(p)
= Q2f2(x) -f(x) 9 (3)

Mx) = Qsf*(x)-fi(x), (4)

fn-2(x)
= Qn_

}
fn. 1(x)-fn(x).

We may now enunciate Sturm's Theorem :

Let two real numbers, a and b, be substituted in place
of x in Sturm's Functions, and the signs noted.
The difference between the number of variations of

sign (§ 334) in the first case and that in the second is

equal to the number of real roots of /(as) =0 lying be-

tween a and b.

The proof of the theorem depends upon the following

principles :

I. Tivo consecutive functions cannot both become for the

same value of x.

For if, for any value of x
9 f(x)—0 and f2(x)

= 0, then by

(3), ./<$(#)
=

;
and since f2(x)

= and f(x) = 0, by (4) f4(x)
=

;

continuing in this way, we shall finally have/„(#) = 0.

But by hypothesis, fn(x) is independent of x
9
and conse-

quently cannot become for any value of x.

Hence, no two consecutive functions can become for the

same value of x.
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II. If any function, except f(x) and fn(x), becomes for any
value of x, the adjacent functions have opposite signs for this

value of x.

For if, for any value of x, f2(x)
= 0, then, by (3), we must

have f(x) = —f3(x) for this value of x.

Therefore,/^) and f(x) must have opposite signs for this

value of x
; for, by I, neither of them can equal zero.

III. Let c be a root of the equation f(x) = 0, where f(x)
is any function except f(x) aj\o\fn(x).

By Ilyf^x) &ndfr+1(x) have opposite signs when x= c.

Let h be a positive number, so taken that no root of fr-i(x)

= 0, or fr+i(x) = lies between c — h and c + h.

Then, as x changes from c—h to c + k, no change of sign

takes place in fr_i(x), or fr+i(x) ;
while fr(x) reduces to zero,

and changes or retains its sign according as the root c occurs

an odd or even number of times in f(x) = 0.

Therefore, for values of x between c — h and c, and also

for values of x between c and c + h, the three functions

f-i(x)> fXx)>
an(i fr+i(x) present one permanence and one

variation.
*

Hence, as x increases from c—h to c + h, no change occurs •

in the number of variations in the functions f_i(x), fr(x), and

fr+i(x) ;
that is, no change occurs in the number of variations

as x increases through a root offr(x)
= 0.

IV. Let c be a root of the equation f(x) = ;
and let h be a

positive number so taken that no root of f(x) = lies between

c — h and c + h.

Then as x increases from c — h to c -f h, no change of sign

takes place in f(x), while f(x) reduces to zero, and changes

sign.

Now if we put x= c — h in (1), the first member becomes

Expanding the powers of c — h by the Binomial Theorem,
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and collecting the terms involving like powers of h, we
have .

c
1i +plc

n * + ••• +pn-ic+pn

-hlnc^ + in-l^c" 2 + ••• +pn-i]

+ terms involving h2
,
h3

,
•
••, h

n
. (5)

But since c is a root of f(x) = 0, we have by (1),

Also, it is evident that the coefficient of — h is the value of

fx(x) when c is substituted in place of x; let this be denoted by
A

;
then (5) reduces to

— JiA -f terms involving 7i
2
,

7i
3
,

• •

•,
hn. (6)

In like manner, the value of f(x) when x is put equal to

c + h, is

+ 7^yl + terms involving h2

,
7i
s
,

• • • hn . (7)

Now, if 7i be taken sufficiently small, the signs of the ex-

pressions (6) and (7) will .be the same as the signs of their

first terms, — hA and -f hA, respectively.

Hence, if h be taken sufficiently small, the sign of (6) will

be contrary to the sign of A, and the sign of (7) will be the

same as the sign of A.

Therefore, for values of x between c — h and c, the functions

/ (x) and fi(x) present a variation, and for values of x between

c and c + h they present a permanence.

Hence, a variation is lost as x increases through a root of

the equation f(x) = 0.

We may now prove Sturm's Theorem
;
for as x increases

from b to a, supposing a algebraically greater than b, a varia-

tion is lost each time that x passes through a root of f(x) = 0,

and only then; for when x passes through a root of fr (x) =0,
where fr(x) is any function except f(x) and /»(#), no change
occurs in the num ber of variations.

Hence, the number of variations lost as x increases from b

to a is equal to the number of real roots of Ar=0 included

between a and b.
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351. It is customary, in applications of Sturm's Theorem,
to speak of the substitution of an indefinitely great positive

number for x, in an expression, as substituting -f- co for x
;
and

the substitution of a negative number of indefinitely great

absolute value as substituting
— oo for x.

The substitution of + oo and — go for x in Sturm's Func-

tions determines the number of real roots of f(x)
— 0.

The substitution of + oo and for x determines the number
of positive real roots, and the substitution of — oo and the

number of negative real roots.

Since Sturm's Theorem determines the number of real roots

of an equation, the number of imaginary roots also becomes

known (§ 316).

352. If a sufficiently great number be substituted in place

of x in the expression

f(x)=pdx
n +plx

n~1 + .-. + Pn_lX +pn,

the sign of the result will be the same as the sign of its first

term, p xn .

It follows from the above that :

If + oo be substituted in place of oc in /(a?), the sign of
the result will be the same as the sign of its first term.

If -oo be substituted in place of as in /(as), the sign of
the result will be the same as, or contrary to, the sign of
the first term, according as the degree of / (as) is even or
odd.

353. Examples.

i. Determine the number and situation of the real roots of

aj3_2ar-x4-l=0.

Here, f(x) = x* -2 oc? - x + \, and fx(x) = 3 x2 - 4 x - 1.

In the process of finding /2 (x), /3 (x), etc., any positive numerical

factors may be omitted or introduced at pleasure, for the sign of the

result is not affected thereby ;
in this way fractions may be avoided.
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In the present case, we multiply /(x) by 3, to make its first term

divisible by 3 x2.

3x3 -4x2 - x

-2x2 - 2x + 3

3

-6a;2 - 6x + 9(-2
— 6x2 + 8x + 2

7)-14x+7
- 2 x + 1 Then, /2 (x) = 2 x - 1.

3 X2_ 4 x _i
2

2x- 1)6 x
2 - 8x-2(3x

6x2 - 3x
- 6x-2

2

_10x-4(-6
— 10 x + 5

~^9 Then,/3(x)=9.

Substituting — oo for x in /(x), /i(x), /2(x), and /s(x), the signs are

—
, + ,

—
,
and + , respectively (§ 352); substituting for x, the signs

are +, — ,

—
, +, respectively ;

and substituting + oo for x, the signs are

all + .

Hence, the roots of the equation are all real, and two of them are posi-

tive and the other negative (§ 351).

We now substitute various numbers to determine the situation of the

roots :
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'

Here, /(x) = 4x3 — 6x— 5; and fx (x) = 12 x2 — 0, or 2 x2 -
1, omitting

the factor 6.

• 2x2 -l)4x3 -6x-5(2x
4 x3 - 2 x

-4x-5
2 x2 - 1

2
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XV. SOLUTION OF HIGHER EQUATIONS

354. Synthetic Division (§ 107) not only abbreviates the

process of division, but its application is of importance in the

solution of many forms of higher equations containing either

commensurable or incommensurable roots.

COMMENSURABLE ROOTS

355. We use the term commensurable root, in Chapter XV,
to signify a rational root expressed in Arabic numerals.

356. By § 322, an equation of the nth degree in the general

form (§ 312), with integral numerical coefficients, cannot have

as a root a rational fraction in its lowest terms.

Therefore, to find all the commensurable roots of such an

equation, we have only to find all its integral roots.

Again, by § 320, the last term of an equation of the above

form is divisible by every integral root.

Hence, to find all the commensurable roots, we have only to

ascertain by trial which integral divisors of the last term are roots

of the equation.

The trial may be made in two ways :

I. By substitution of the supposed root.

II. By dividing the first member of the equation by the

unknown number minus the supposed root (§ 315).

In this case, the operation may be conveniently performed

by Synthetic Division (§ 107).

In the case of small numbers, such as ±1, the first method

may be the most convenient.

The second has the advantage that, when a root has been

found, the process gives at once the depressed equation (§ 317)
for obtaining the remaining roots.

Work may sometimes be saved by finding a superior limit to the
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positive, and an inferior limit to the negative, roots (§§ 339, 340);
for no number need be tried which does not fall between these

limits.

Descartes' Rule of Signs (§ 335) may also be advantageously employed
to shorten the process.

Any multiple root should be removed (§ 343) before applying either

method.

Ex. Find all the roots of x4 - 15 x2 + 10 x + 24 = 0.

By Descartes' Rule, the equation cannot have more than two positive

roots.

Changing the signs of the alternate terms commencing with the second,
we have z4 - 15 x2 — 10 x + 24 = 0.

Then, the given equation cannot have more than two negative roots

(§ 336).

The integral divisors of 24 are ±1, ±2, ±3, ±4, ±6, ±8, ±12, and

±24.

By substitution, we find that 1 is not, and that — 1 is, a root of the

equation.

Dividing the first member by x — 2, x — 3, etc., by the method ex-

plained in § 108, we have

1 + o - 15 + 10 + 24
j_2

1 + - 15 + 10 + 24 [3
2 4 -22-24 3 9 -18-24
2-11-12, Rem. 3 - 6 -

8, Rem.

The work shows that 2 and 3 are roots of the given equation ;
and

since the equation cannot have more than two positive roots, these are

the only positive roots.

The remaining root may be found by dividing 24 by the product of
! —

1, 2, and 3 (§ 321), or by the same process as above.

Dividing the first member by x + 2, x + 3, etc., we have

1 + 0-15+10+24 [
-2 1 + 0-15+10+24 [^-3

-2 4 22 - 64 -3 9 18-84
-2-11 32-40 -3- 6 28-60

1 +o_ 15 +10 +241-4
-4 16 - 4-24
-4 16

The work shows that the remaining root is — 4.
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357. By § 829, an equation of the nth degree in the general

form, with fractional coefficients, may be transformed into

another whose coefficients are integral, that of the first term

being unity.

The commensurable roots of the transformed equation may
then be found as in § 356.

* Ex. Find all the roots of 4 a? - 12 x2 + 27 x - 19 = 0.

Dividing through by the coefficient of x8
,
we have

4 4

Proceeding as in § 329, it is evident by inspection that the multiplier 2

will remove the fractional coefficients
;
the transformed equation is

X3_ 2 . 3 x2 + 22 .21* -23 • - = 0,
4 4

or, Xs - 6 x2 + 27 x - 38 =
; (1)

whose roots are those of the given equation multiplied by 2.

By Descartes' Rule, equation (1) has no negative root.

The positive integral divisors of 38 are 1, 2, 19, and 38.

Dividing the first member by x — 1, x — 2, etc., we have

1 _ 6 + 27 - 38
|_1_

1 - 6 + 27 - 38
|_2

1 -5 22 2-8 38

- 5 22 - 16 - 4 19

The work shows that 2 is a root of (1).

The remaining roots may now be found by depressing the equation;
it is evident from the right-hand operation above that the depressed equa-
tion is x2 — 4 x + 19 = 0.

Solving by the rules for quadratics, x = 2 ± V— 15.

Then, the three roots of (1) are 2 and 2 ± V— 15.

Dividing by 2, the roots of the given equation are 1 and 1 ± V— 15.

EXERCISE 89

Find all the commensurable roots of the following, and the

remaining roots when possible by methods already given.

i. ,r
s -9x2+ 23x-15 = Q. 3. aj

8 + 12a?2+ 44a? + 48 = 0.

2 . aj3_8x2
-h 5a> + 14 = 0. 4. x* + Ax2 - 9»-36 = 0.
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5. 3ar3 H-4ar>-13a;-f 6 = 0.

6. 4a8+16a2-7a>-39=0.

7. a4+10ar3 + 3ox2 + o0z + 24 = 0.

8. a4- 5 &» + 20 a?- 16 = 0.

9. a*-15a* + 65a?-105x + 5± = 0.

10. aj
4 + 8a^4-ll^

2 -32a!-60 = 0.

11. xi -2x*-l7x2 + 18x + 72 = 0.

12. 4a4 -12a8 -9ar9 + 47x-30 = 0.

13. 6a*4 -7a8 -37a2 + 8a;4-12 = 0.

14. ar
5 + 8a;4 -7ar3 -103a2 + 69x + 18 = 0.

15. 3a4
-f-2ar

5 -18x2 + 8 = 0.

16. x4 + # - 6 x2 + 16 a? - 32 = 0.

RECIPROCAL OR RECURRING EQUATIONS

358. A Reciprocal Equation is one such that if any number

is a root of the equation, its reciprocal is also a root.

It follows from the above that, if - be substituted for x in
x

a reciprocal equation, the transformed equation will have the

same roots as the given equation.

359. Let

xn +plx
n~1 +p^n-2 + .- +pH-jx?+pn-iX+pH

=
(1)

be a reciprocal equation.

Putting - for x, the equation becomes
x

x11 xn~ x x"- 1 X1 X

Clearing of fractions, and reversing the order of the terms,

PnX
n +Pn-\Xn~1

+i>n-2#
n~2

4" '— "f P»X
2 + Pl% + 1=0.
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Dividing through by pn ,

xn + Pj}=_\Xn-l +P_rL=2xn-2 + ... + P?^ + Si X + -I = 0. (2)
Pn Pn Pn Pn Pn

By § 358, this equation has the same roots as (1) ;
and hence the fol-

lowing relations must hold between the coefficients of (1) and (2),

p 1 =^,p2 =^,..-, Pn-2=^,Pn-i=P-±,pn = ±-. (3)
Pn Pn Pn Pn Pn

From the last equation, pn
% = 1

; whence, pn = ± 1.

Substituting the value of pn ,
the equations (3) become

Pi - ± Pn-l, P2 = ± Pn-2,
"•

5

all the upper signs, or all the lower signs, being taken together.

We then have four varieties of reciprocal equations :

1. Degree odd, and coefficients of terms equally distant

from the extremes of the first member equal in absolute value

and of like sign ; as, x
3 — 2 x2 — 2 x + 1 = 0.

2. Degree odd, and coefficients of terms equally distant

from the extremes of the first member equal in absolute value

and of opposite sign ; as, 3 x5
-f 2 x4 — Xs+ x2 — 2 x — 3 = 0.

3. Degree even, and coefficients of terms equally distant

from the extremes of the first member equal in absolute value

and of like sign ; as, x* — 5 Xs + 6 x2 — 5 x -f- 1 = 0.

4. Degree even, and coefficients of terms equally distant

from the extremes of the first member equal in absolute value

and of opposite sign, and middle term wanting ; as,

2^6 + 3aj5-7^4 + 7^2 -3a?-2 = 0.

On account of the properties stated above, reciprocal equa-
tions are also called Recurving Equations,

360. Every reciprocal equation of the first variety may be

written in the form
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or, i) (^ + l)+i>i(^-
1

+^)-hp2(^-
2 + ^)+ ••• =0; (1)

or, p (x
n + 1) +p&(&~* + !) +P^(xn~ 4 + 1) + ... =

;

the number of terms being even.

Since n is odd, each of the expressions xn + 1, xn~2 + 1, etc., is divisible

by x+ 1.

Therefore, — 1 is a root of the equation (§ 315).

Dividing the first member of (1) by x + 1, the depressed equation is

PoOw_1 — xn~2 + xn~ s — ••• + x2 — X + 1)

+ Pl(X
n~ 2 — Xn"3 + £n~4 — ••• +XS - x2 + x)

+ p2 (x
n~s - xn~* + xn~5 - ••• + x4 — Xs + z2) + ... = 0.

Or, jpo^
n_1 + (Pi

- Po)£
n~2 + (P2-.P1 +Po)x

n~* + ...

+ (JP2
- Pi + Po)x

2 + (Pi-po)x+p = 0;

which is a reciprocal equation of the third variety.

361. Every reciprocal equation of the second variety may
be written in the form

PoX
n
-fpjX**

1 +p2x
n~ 2 + • • • —

peps
2 —p lx—p = 0,

or, p (x
n -

1) -fp^x
71-1 -

x) +p2 (aj
n" 2 - #2

) + • • • = 0, (1)

or, Po(x
n —

1) + p&ix
71-2 —

1) +p2x
2

(x
n~4 —

1) + • • • =0.

Since each of the expressions xn — 1, xn~2 —
1, etc., is divisible by

x — 1, + 1 is a root of the equation.

Dividing the first member of (1) by x — 1, the depressed equation is

Po(x
n~ l + xn ~2 H- xn~3 + ... + x2 + x + 1)

+ PiOc
n~2 + xn~3 +x"~ 4

-f ..." + xs + a*
2 + a)

+ P20n-3 + £"~4 + xn -5 + ... +x4 4-a^ + x2
) + ••• =0,

or, poo
71-1 + (Pi + Po)^

n~ 2 + (pa -f Pi +Po)xn~s + •••

+ (Pi + Pi + Po)x
2 + (p -f p ).* + Po = ;

which is a reciprocal equation of the third variety.
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362. Every reciprocal equation of the fourth variety may
be written in the form

p (x
n -1)+ PiO""

1 -
*) 4-i>2(^"

2 - a8

) 4- • • • = 0, (1)

or, p (x
n -

1) +PxX{ar-*
-

1) +p&\x
n ~* -

1) 4- • • • =
;

the number of terms being even (§ 359).

Since each of the expressions xn — 1, xn~2 — 1, etc., is divisible by
x2 —

1, both 1 and — 1 are roots of the equation.

Dividing the first member of (1) by x2 —
1, the depressed equation is

p (x
n~ 2 + xn~4 + xn~& + • •• 4 z4 4 x2

4- 1)

+ lh(x
w-8 4 £TC-5 4 xn"7 + h x5 4 «3 + £)

4 P2(x
n~ 4 4 £w_6 4 xn~8

4- ... 4 x6 4 x4 4 x2
) + •• • = 0,

or, i> ^n- 2 + piz*-3 4 (i>2 4 Po)x
TO"4 4 —

+ (p2 4p )^
2 +W» + Po = °

;

which is a reciprocal of the third variety.

363. Every reciprocal equation of the third variety
may be reduced to an equation of half its degree.

Let the equation be

i>o^
m
4-Pi^

m-1
4- r-pm_2^

m+2
+i>m-i^

w+1 +i>m^

+Pm-ix
m-1

4-i>m_2^
w"2+ ••• +PiX +pQ

= 0.

Dividing each term by xm
,
the equation may be written

Po[x
m + ±-)+ Pl (xm

- l + -^—)+ ...

V x™) \ xm-^j

+pm- 2
(x

2 4
i] +*-i(* +£)

+P- = 0. (1)

Put x+-=y.
x

Then, a;
2 4 ~ = fa +-V- 2 = y

2 - 2
;

x2
\ x]

= y(y
2 -2)-y = y3-3y;
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= y(y
s - 3 y)- (y

2 -
2) = y*

- 4 y* + 2
;

etc.

In general,

x'- V &/\ z' -1 / \ xr- 2 J

an expression of the rth degree with respect to y.

Substituting these values in (1), the equation takes the form

wm + <xy
m~ Y + &ym

~ 2 + ••• = o.

364. It follows from §§ 360 to 363 that any reciprocal equa-
tion of the degree 2 m -f 1, and any reciprocal equation of the

fourth variety of the degree 2 m + 2, can be reduced to an

equation of the mth degree.

365. Ex. Solve 2 x5 -5xi -13xi + 13X2 + 5x- 2=0.

The equation being of the second variety, one root is 1 (§ 361).

Dividing by x — 1, the depressed equation is

2x4 -3x3 -16x2 -3x + 2 = 0;

a reciprocal equation of the third variety.

Dividing by x2
,

2 (x2
-f -) - 3 (x + -\ - 16 = 0.

Putting x + 1 = y, and x2 + — = y
1 - 2 (§ 363), we have

x x2

20/2-2)- 3 y -16 = 0.

Solving this equation, ?/
= 4 or ~ f .

Taking the first value, x + - = 4, or x2 — 4 x + 1 =0.
x

Whence, x = 2 ± V3.

1 5
Taking the second value, x + -= ,

or 2 x2 + 5 x + 2 = 0.
x 2

Whence, x = — 2 or — £.

The roots of the given equation are 1,
—

2,
—

£, and 2 ± V&.

That 2 -f V3 and 2 — V3 are reciprocals may be shown by multiplying
them

; thus, (2 + V3)(2 - \/3) =4-3 = 1.



270 ALGEBRA

EXERCISE 90

Solve the following equations :

i. 4aj3 + 21arJ + 21a + 4 = 0. 3. Xs - 5 x2 - 5x + l = 0.

2. xi + 4x2 -±x-l = 0. 4. 6a4
-P 13a8 - 13 a- 6 = 0.

5. 24a4 -10ar3-77a2 -10a + 24 = 0.

6. x" + 2x4 -5x3 + 5x2 -2x-l = 0.

7. 5 ar
5 - 56 a4 + 131 a? + 131a2 - 56 x + 5 = 0.

8. 3ar5 + 4a4 -23#3 -23a2 +4a; + 3=0.

9. 6ar5 -7z4 -27a3 +27a2 + 7a;-6=0.

10. 10x6 -19^-19x4 + 19^ + 19aj-10 = 0.

366. Binomial Equations.

A Binomial Equation is an equation of the form x n= a.

Binomial equations are also reciprocal equations, and, in

certain cases, may be solved by the method of § 365.

EXERCISE 91

Solve the following equations :

1. x5 = 1. 2. x* = — 1. 3. ar
5 = a5

. (Put x= ay.)

CUBIC EQUATIONS

367. A Cubic Equation is an equation of the third degree

containing but one unknown number.

368. By § 333, the cubic equation

ar
3

+p$P + p2x +ps
= 0,

where pY is not zero, may be transformed into another whose

second term shall be wanting by substituting y — ~ for x.
o

Hence, every cubic equation can be reduced to the form

x] + ax + 6 = 0.
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369. Cardan's Method for the Solution of Cubics.

Let it be required to solve the equation Xs + ax -+- b = 0.

Putting x = y + z, the equation becomes

y
3 + 3yz(y + z)+z

3 + a(y + z)+b = 0,

or, y
8 + »8 + (3^ + a)(y + *) + & = 0.

We may give such a value to z that 3yz + a shall equal zero.

Whence, z = — -— •

(1)
3y

Then, $*+**+* =0. (2)

Substituting the value of z from (1) in
(2), we have

2/

3 -— + 6=0, or ys + bif-— = 0.

This is an equation in the quadratic form (Exercise 44,

Note 3).

Solving by the rules for quadratics, we have

*'=-h\f+fr p

Thenbj(2), 2< = - s.-S = -| T^ + |. (4)

Taking the upper signs before the radical signs, in (3) and

(4), and substituting in the equation x = y + z, we have

The lower signs before the radical signs give the same value of x.

The other two roots may be found by depressing the given

equation (§ 317).

Ex. Solve the equation x3 + 3X2 — 6 a? -f- 20 = 0. ^

We first transform the equation into another whose second term shall

be wanting.
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Putting x = y-% = y-l(§ 368), we have

2,3
_ 3y2 + s y - 1 + 3?/2

_ 6y + 3 - Gy + 6 + 20 = 0,

or ?/
3 - 9 y + 28 = 0.

To solve the latter equation, we substitute a = — 9 and b = 28 in (5),

§ 369.

Thus. y =3 V- 14 + v/196 - 27 + \/- 14 - Vl96 - 27

= v^Ti + ^T27 = - 1 - 3 =- 4.

Therefore, x = y — 1 =— 5.

Dividing the first member of the given equation by aj -f 5, the depressed

equation is <*-2z + 4 = 0.

Solving, x = 1 ± V— 3.

Thus, the roots of the given equation are — 5 and 1 ± V— 3.

EXERCISE 92

Solve the following equations :

1. ar*-24a;-72 = 0. 6. ^ + 6^ + 27^-86 = 0.

2. ar
3-12z + 16 = 0. . 7. ar> + 9a2 + 12 a? -144 = 0.

3. ar*+ 72o; + 152 = 0. 8. tf + x2 - 3a + 36 = 0.

4. ar
l -12a2 + 21a-10 = 0. 9. a?-2a?-15x + 36 = 0.

5. .^-3a;2 + 48aj + 52 = 0. 10. ^-4^ + 8 x- 8 = 0.

11. Find one root of x3 + x — 2 = 0.

a3
fo
2

370. If a is negative, and — numerically greater than —
,
the

IF2 ¥ . .

expression \-r~^~o~ 1S imaSinary»

In such a case, Cardan's method is of no practical value
;

for there is no method in Algebra for finding the cube root of

a binomial surd.

In this case, which is called the Irreducible Case, Cardan's

method is said to fail.

It is possible, in cases where Cardan's method fails, to find

the roots by a method involving Trigonometry.
But practically it is easier to find them by the method of

§ 356, or by Horner's method (§ 374), according as the equa-
tion has or has not a commensurable root.
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BIQUADRATIC EQUATIONS

371. A Biquadratic Equation is an equation of the fourth

degree, containing but one unknown number.

372. Euler's Method for the Solution of Biquadratics.

l>y § 333, every biquadratic can be reduced to the form

x4 + ax2 + bx + c = 0. (1)

Let x = u + y + z.

Then, x2 = u2 + y
2 + z2 + 2 uy + 2 yz + 2 zu,

or, x2 — (u
2 + y

2 + z2) = %(uy + yz + zu).

Squaring both members, we have

x4 - 2 x2
(u

2 + y
2 + 22) + (u

2 + 2/
2 + 22)

2

-.
4(w

2
y
2 + y

2z2 + z2w2 + 2 wy
2^ + 2 w2

*/z + 2 i/2
2
tt)

= 4(tt
2
y
2 + y

2z2 + 22w2
) + 8 uyz(u + y + z).

Substituting x for u + y + z and transposing,

x4 - 2 x2 (w
2 + y

2 + a»)
- 8 wysx

+O2 + y
2 + z2

)
2 - 4(«V + V

2z2 + z2u2
)
= 0.

This equation will be identical with (1) provided

a=-2(u2 + y
2 + z2), (2)

b = — 8 uyz, or w^2 = , (3)
8

and c as
(?<

2 + y
2 + 22)

2 - 4O2
?/
2 + y

2z2 + z2w2
) • (4)

By (2), u2 + 2/
2 + z2 = - £ ; and, by (3), u2

y
2z2 =s£.

2 o4

Also, by (4) ,
u2

y
2 + y

2^2 + z2u2 = (^
2 + ^

2 + s2)
2 - c

.

4

Then, hV + */
2z2 + z2u2 =

-i^—
= ^-^ •

By § 319, the cubic equation whose roots are u2
, y

2
,
and 22 is

£3 _ ( tt
2 + ?/2 + 2,2)^2 + (^2 + j^S + ^2)$ _ yi^A _ 0.

Putting for it
2 + y

2
-f z2

,
w2

y
2 + y

2z'2 -f z2 ?<
2
,
and u2

y
2z2

,
the values

given above, this becomes

t> + °fi + <£=A°t-£=o. (5)
2 16 04

v '
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If Z, m, and n represent the roots of this equation, we have u2 —
Z,

y
2 = m, and z2 = n

; or, w = ± VZ, ?/
= ± Vm, 2 = ± Vtt.

Now x = u + y + z; and since each of the numbers u, y, and z has two

values, apparently x has etyfa values.

But by (3), the product of the three terms whose sum is a value of x

must be
8

Hence, the only values of x are, when b is positive,

— Vl — Vm — Vw, — y/l + Vm + Viz,

Vz~— Vm -f Vn, and Vz"-f- Vm — Vn
;

and when 5 is negative,

Vz + Vm -f Vw, Vz~— Vm — V»,

— Vz + Vm — Vra, and — y/l — Vm + Vn.

Equation (5) is called the auxiliary cubic of (1).

i2x. Solve the equation

a4 -46ar-24a + 21 = 0.

Here, a = - 46, b - -
24, c = 21.

Whence,
fl
2 - 4 c _m and

6* = Q
16

'

64

Then the auxiliary cubic is

£ _ 23 £
2 + 127 * - 9 = 0.

By the method of § 356, one value of t is 9.

Dividing the first member by t - 9, the depressed equation is

4 t
2 - 14 t + 1 = 0.

Solving, t = 7 ± V49 - 1 = 7 ± 4 V3.

Proceeding as in § 193, we have

V(7 ± 4 V3) = V(4 ± 2 Vl2 + 3) = 2 ± V3.

Then since b is negative, the four values of x are

3 + 2 + V3 + 2 - V3, 3 - 2 - V3 - 2 + V3,

- 3 + 2 + V3 - 2 + V3, and - 3 - 2 - V3 + 2 - V3.

That is, 7,-1, -3 + 2 V3, and - 3 - 2 V3.
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EXERCISE 93

Solve the following :

i. x4 -60x2 + 80a; + 384 = 0.

2 . x4-Ux2 + l6x + 192 = 0.

3. a4 -40a2 + 64a + 128 = 0.

4. x4 - 54.x2 -216a-243 = 0.

INCOMMENSURABLE ROOTS

373. We will now show how to find the approximate numeri-

cal values of those roots of an equation which are not com-

mensurable (§ 355).

374. Horner's Method of Approximation.

Let it be required to find the approximate value of the root

between 3 and 4 of the equation

x3 -3x2 -2x + 5 = 0.

We first transform the equation into another whose roots

shall be respectively those of the first diminished by 3, by the

second method explained in § 332.

The operation is conveniently performed by Synthetic Division (§ 108).

1 _3 _2 +5 [8

3 0-6
1st quotient, 1 —

2,
— 1 1st Rem.

3 9

2d quotient, 1 3, 7 2d Rem.
3

6, 3d Rem.

The transformed equation is y
z + 6y2

-\- 7 y — 1=0. (1)

We know that equation (1) has a root between and 1. ^

If, then, we neglect the terms involving y* and y
2

,
we may obtain an

approximate value of y by solving the equation 7 y — 1 =
; thus, approxi-

mately, y = .1 and x = 8.1.
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Transforming (1)
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The process can be continued until the root has been found

to any desired degree of precision.

We derive from the above the following rule for finding the

approximate value of a positive incommensurable root :

Find by § 346, or by Sturm's Theorem (§ 350), the

integral part of the root. (Compare § 347.)
Transform the given equation into another whose

roots shall be respectively those of the first diminished
by this integral part.
Divide the absolute value of the last term of the trans-

formed equation by the absolute value of the coefficient

of the first power of the unknown number, and write the

approximate value of the result as the next figure of the
root.

Transform the last equation into another whose roots
shall be respectively those of the first diminished by the

figure of the root last obtained, and divide as before for

the next figure of the root ;
and so on.

In practice, the work may be contracted by dropping such decimal

figures from the right of each column as are not needed for the required

degree of accuracy.

In determining the integral part of the root, it will be found convenient

to construct the graph of the first member of the given equation.

375. To find an approximate value of a negative incom-

mensurable root, change the signs of the alternate terms of the

equation commencing with the second (§ 326), and find the

corresponding positive incommensurable root of the trans-

formed equation.

The result with its sign changed will be the required nega-
tive root.

376. In finding any particular root-figure by the method of

§ 374, we are liable, especially in the first part of the" process,

to get too great a result
;
the same thing occasionally happens

when extracting square or cube roots of numbers.
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Such an error may be discovered by observing the signs of

the last two terms of the next transformed equation ;
for since

each root-figure obtained as in § 374 must be positive, the last

two terms of the transformed equation must be of opposite sign.

If this is not the case, the last root-figure must be diminished

until a result is obtained which satisfies this condition.

Let it be required, for example, to find the root between and — 1 of

the equation xs + 4 x2 — 9 x — 5 = 0.

Changing the signs of the alternate terms commencing with the second

(§ 326), we have to find the root between and 1 of the equation

xs _ 4 X2 _ 9 x + 5 = o.

Dividing 5 by 9, we have . 5 suggested as the first root-figure ;
but it

will be found that in this case the last two terms of the first transformed

equation are — 12.25 and — .375.

This shows that .5 is too great ;
we then try .4, and find that the last

two terms of the first transformed equation are of opposite sign.

The work of finding the first three- root-figures is shown below.

1-4 - 9 +5 1^469

.4 - 1.44 - 4.176

-3.6 -10.44 (1) .824

A - 1.28 - .713064

-3.2 (1) -11.72 (2) .110936

.4 - .1644

(1)
_ 2.8

' - 11.8844

.06 - .1608

- 2.74 (2)
- 12.0452

.06

-2.68
.06

(2)
- 2.62

The required root is — .469, to three places of decimals.

377. Sometimes too small a number is suggested for the

first root-figure.

Let it be required, for example, to find the root between and 1 of the

equation

s8 - 2 x2 + 3 x - 1 = 0.
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Dividing 1 by 3, we have .3 suggested as the first root-figure.

-2
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EXERCISE 94

Find the root between :

i. 1 and 2, of a8 — 9 a2 + 23 x -16 = 0.

2. 4 and 5, of x3 — 4 #2 — 4 x -J- 12 = 0.

3. Oand -1, of ar* + 8 a2 -9 a- 12 = 0.

4. -2and -3, of a^-3 a2 - 9 # + 4 = 0.

5. 3and4, of Xs - 6 x2 + 15 x -19 = 0.

6. Oandl, of x*+ x> + 2 x2- x-l = 0.

7. 2 and 3, of #4 -3 ar* + 4 a- 5 = 0.

8. -land -2, of a4 - 2^-3 a2 + a- 2 = 0.

Find all the real roots of the following :

9. x? + 2x2 -x-l = 0. 12. a4 + 2ar*-5 = 0.

10. x*-2x*-7x-l = 0. 13. a? - x2 + 2x- 1 = 0.

11. ar
s -5a2+ 2a + 6 = 0. 14. x4 -6 x2 + 11 x+ '21 = 0.

Find the approximate values of the following:

15. ^3. 16. \$t 17. ^7.

380. We may now give general directions for finding the

real roots of any equation of the form

xn +PlX
n-i + ... +Pn_ lX +pn = 0,

with integral numerical coefficients :

1. Determine by Descartes' Rule (§ 335) limits to the num-

ber of positive and negative roots.

2. Find all the commensurable roots, if any, as explained
in § 356.

3. If possible, locate the incommensurable roots by the

method of § 346.

4. If the incommensurable roots are not all located in this

way, apply Sturm's Theorem (§ 350), observing that, if the first

member and its first derivative have a common factor, the

given equation has multiple roots (§ 343).

5. Approximate to the decimal portions of the incommen-

surable roots by Horner's method (§ 374).
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Abscissa, 22.

Addition, commutative law, 1.

Affected quadratic, 128.

Aggregation, signs of, 6.

Alternation, 84.

Arithmetical complement, 55.

Arithmetic mean, 167.

Arithmetic progression, 163.

Associative law, addition, 1
; multipli-

cation, 2.

Axioms, 5.

Binomial, cube of, 97; equations, 270;

surds, 118; theorem, 108; theorem,
rth term, 112.

Biquadratic equations, 273.

Cardan's method, 271.

Characteristic, 42.

Circle, 157.

Coefficients, 4; composition of, 234;
of determinant, 222

; undetermined,
192.

Combinations, 203.

Commensurable roots, 262.

Common factor, 66.

Common logarithms, 42.

Common multiple, 66.

Commutative law, 1.

Complement, arithmetical, 55.

Completing the square, 128.

Complex number, 122, 126.

Composition, 85.

Composition and division, 86.

Composition of coefficients, 234.

Condition, equation of, 5.

Conjugates, 140.

Constant, 76.

Continued proportion, 83,

Convergent series, 180,

Coordinates, 22.

Cube of binomial, 97; root of num-

bers, 104; root of polynomial, 99.

Cubic equations, 270.

Degree, 11, 33.

Derivatives, 249.

Descartes' rule for signs, 243.

Determinants, 211; definition of, 214;

evaluation of, 224; minors, 220;

properties of, 216.

Difference, 4.

Differential method, 186.

Direct proportion, graph, 143.

Discussion of quadratics, 139.

Distributive law, multiplication, 3.

Divergent series, 180.

Division, synthetic, 63, 85.

Elimination, 17.

Ellipse, 158.

Equations, binomial, 270; biquadratic,

273; cubic, 270; definition, 5; equiv-

alent, 6, 11, 16; formation, 233;

higher, 262; inconsistent, 18; inde-

pendent, 18; identical, 5; integral,

10; linear, 11, 23; numerical, 10;

quadratic, 128
; quadratic form, 133 ;

radical, 120; reciprocal, 265; simple,

11; simultaneous, 17; simultaneous

quadratic, 149; solution of, 5, 18;

theory of, 230; transformation of,

238.

Equivalent equations, 6, 11, 16.

Euler's method, 273.

Evolution, 98.

Evolution of determinants, 224.

Expansion of surds, 196.

Exponents, 32.

Expression, degree of, 10, 11
; rational,

10.

Factors, 57, 66, 147.

Factors, type forms, 58.
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Factor theorem, 60.

Finite series, 108.

Formation of equations, 233.

Formula, quadratic, 130.

Fourth proportional, 83.

Fractional exponent, 32.

Fractional roots, 236.

Fractions, 73; generating, 185;

tial, 196; reduction of, 74.

par-

Generating fraction, 185.

Geometric, means, 171; progression,
166.

Graphs, 21, 254; direct proportion,

143; imaginaries, 125; inverse pro-

portion, 143; quadratic equations,

137, 141; simultaneous quadratics,
157.

Higher equations, 262.

Highest common factor, 66.

Hindoo method, 130.

Horner's method, 275.

Horner's synthetic division, 63.

Hyperbola, 158.

Identity, 5.

Imaginaries, 122; graphs, 125; roots,

140, 237.

Incommensurable roots, 275.

Inconsistent equations, 18.

Independent equations, 18.

Indeterminant forms, 76, 80.

Induction, mathematical, 110, 187.

Inequalities, 26.

Inferior limit, 247.

Infinite series, 108, 179.

Integral equation, 10.

Integral exponent, 32.

Interpolation, 190.

Inverse proportion, graph, 143.

inversion, 85.

Involution, 97.

Irrational number, 57.

Irrational roots, 139.

Limit, 76.

Limit to roots, 246.

Line, 22.

Linear equation, 11.

Location of roots, 252, 255.

Logarithms, 41.

Logarithm table, 50.

Lowest common multiple, 66.

Mantissa, 42.

Mathematical induction, 110, 187.

Mean proportional, 83.

Minors, 220.

Multiple, common, 66.

Multiple roots, 249.

Multiplication, commutative law, 1;

distributative law, 3,

Negative exponent, 33.

Negative sign, 8.

Number, irrational, 57.

Order of difference, 186.

Ordinate, 22.

Origin, 22.

Oscillating series, 181.

Parabola, 158.

Parentheses, 8.

Partial fractions, 196.

Permutations, 203.

Physics problems, 145.

Piles of shot, 189.

Point, 21.

Polynomial, cube root of, 99; square
of, 97

; square root of, 98.

Positive sign, 8.

Powers of i, 123.

Progressions, 163.

Properties of determinants, 216; of

inequalities, 27
;
of logarithms, 44.

Proportion, 83.

Pure imaginary, 122.

Pure quadratic, 128.

Quadratic equations, 128; discussion

of, 139; graph of, 137, 141; theory

of, 136.

Quadratic, factoring, 147; formula,

130; surds, 33, 117.

Radical equations, 120.

Ratio, 82.

Rational expression, 10.

Reciprocal equation, 2(>5.
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Recurring equations, 265.

Reduction of fractions, 74.

Remainder theorem, 60.

Reversion of series, 202.

Roots, 5; commensurable, 262; extrac-

tion of, 97, 98, 102, 117
; fractional,

236; imaginary, 140, 237; incom-

mensurable, 275; limits of, 246;

location of, 252, 255; multiple, 249.

rth term, 112.

Scale of relation, 185.

Series, 108, 163, 183
; convergent, 180

;

recurring, 182; reversion of, 202;
summation of, 182.

Shot, piles of, 189.

Similar terms, 4.

Simple equations, 11.

Simultaneous equations, 17, 149;

quadratic equations, 149.

Solution, 5, 18; by determinants, 228.

Square, completion of, 128.

Square of numbers, 102; of polyno-
mial, 97

;
root of polynomial, 98.

Straight line, 23.

Sturm's theorem, 255.

Summation of series, 182.

Superior limit, 246.

Surds, 33, 117, 118
; expansion of, 196.

Symmetrical forms, 150.

Synthetic division, 63.

Systems of equations, 16.

Tables, Logarithm, 50.

Term, rth, 112.

Terms, similar, 4.

Theorem, binomial, 108; Sturm's, 255.

Theory of equations, 230.

Theory of quadratic equations, 136.

Third order of determinants, 212.

Third proportional, 83.

Transformation of equations, 238.

Type forms, factors, 58.

Undetermined coefficients, 192.

Variable, 76.

Variation, 91.

Zero exponent, 33.
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